Free access
Issue
ESAIM: M2AN
Volume 37, Number 3, May-June 2003
Page(s) 433 - 450
DOI http://dx.doi.org/10.1051/m2an:2003036
Published online 15 April 2004
  1. Z. Agur, L. Cojocaru, R. Anderson and Y. Danon, Pulse mass measles vaccination across age cohorts. Proc. Natl. Acad. Sci. USA 90 (1993) 11698–11702. [CrossRef]
  2. W.G. Aiello and H.I. Freedman, A time delay model of single-species growth with stage structure. Math. Biosci. 101 (1990) 139–153. [CrossRef] [MathSciNet] [PubMed]
  3. W.G. Aiello, H.I. Freedman and J. Wu, Analysis of a model representing stage structured population growth with state-dependent time delay. SIAM J. Appl. Math. 52 (1990) 855–869. [CrossRef]
  4. D.D. Bainov and P.S. Simeonov, System with impulsive effect: stability, theory and applications. John Wiley & Sons, New York (1989).
  5. J.R. Bence and R.M. Nisbet, Space limited recruitment in open systems: The importance of time delays. Ecology 70 (1989) 1434–1441. [CrossRef]
  6. O. Bernard and J.L. Gouzé, Transient behavior of biological loop models, with application to the droop model. Math. Biosci. 127 (1995) 19–43. [CrossRef] [MathSciNet] [PubMed]
  7. O. Bernard and S. Souissi, Qualitative behavior of stage-structure populations: application to structure validation. J. Math. Biol. 37 (1998) 291–308. [CrossRef] [MathSciNet]
  8. L.W. Botsford, Further analysis of Clark's delayed recruitment model. Bull. Math. Biol. 54 (1992) 275–293.
  9. J.M. Cushing, Equilibria and oscillations in age-structured population growth models, in Mathematical modelling of environmental and ecological system, J.B. Shukla, T.G. Hallam and V. Capasso Eds., Elsevier, New York (1987) 153–175.
  10. J.M. Cushing, An introduction to structured population dynamics. CBMS-NSF Regional Conf. Ser. in Appl. Math. 71 (1998) 1–10.
  11. I.R. Epstein, Oscillations and chaos in chemical systems. Phys. D 7 (1983) 47–56. [CrossRef]
  12. J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Springer Verlag, Berlin, Heidelberg, New York, Tokyo (1990).
  13. J. Guckenheimer, G. Oster and A. Ipaktchi, The dynamics of density dependent population models. J. Math. Biol. 4 (1977) 101–147. [MathSciNet]
  14. W.S.C. Gurney, R.M. Nisbet and J.L. Lawton, The systematic formulation of tractable single-species population models incorporating age-structure. J. Anim. Ecol. 52 (1983) 479–495. [CrossRef]
  15. W.S.C. Gurney, R.M. Nisbet and S.P. Blythe, The systematic formulation of model of predator prey populations. Springer, J.A.J. Metz and O. Dekmann Eds., Berlin, Heidelberg, New York, Lecture Notes Biomath. 68 (1986).
  16. A. Hastings, Age-dependent predation is not a simple process. I. continuous time models. Theor. Popul. Biol. 23 (1983) 347–362. [CrossRef]
  17. S.P. Hastings, J.J. Tyson and D. Webster, Existence of periodic solutions for negative feedback cellular control systems. J. Differential Equations 25 (1977) 39–64. [CrossRef] [MathSciNet]
  18. M.J.B. Hauser, L.F. Olsen, T.V. Bronnikova and W.M. Schaffer, Routes to chaos in the peroxidase-oxidase reaction: period-doubling and period-adding. J. Phys. Chem. B 101 (1997) 5075–5083. [CrossRef]
  19. S.M. Henson, Leslie matrix models as “stroboscopic snapshots" of McKendrick PDE models. J. Math. Biol. 37 (1998) 309–328. [CrossRef] [MathSciNet]
  20. Y.F. Hung, T.C. Yen and J.L. Chern, Observation of period-adding in an optogalvanic circuit. Phys. Lett. A 199 (1995) 70–74. [CrossRef]
  21. E.I. Jury, Inners and stability of dynamic systems. Wiley, New York (1974).
  22. K. Kaneko, On the period-adding phenomena at the frequency locking in a one-dimensional mapping. Progr. Theoret. Phys. 69 (1982) 403–414. [CrossRef] [MathSciNet]
  23. K. Kaneko, Similarity structure and scaling property of the period-adding phenomena. Progr. Theoret. Phys. 69 (1983) 403–414. [CrossRef] [MathSciNet]
  24. M.J. Kishi, S. Kimura, H. Nakata and Y. Yamashita, A biomass-based model for the sand lance in Seto Znland Sea. Japan. Ecol. Model. 54 (1991) 247–263. [CrossRef]
  25. A. Lakmeche and O. Arino, Bifurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment. Dynam. Contin. Discrete Impuls. Systems 7 (2000) 165–287.
  26. V. Laksmikantham, D.D. Bainov and P.S. Simeonov, Theory of impulsive differential equations. World Scientific, Singapore (1989).
  27. P.H. Leslie, Some further notes on the use of matrices in certain population mathematics. Biometrika 35 (1948) 213–245. [MathSciNet]
  28. S.A. Levin, Age-structure and stability in multiple-age spawning populations. Springer-Verlag, T.L. Vincent and J.M. Skowrinski Eds., Berlin, Heidelberg, New York, Lecture Notes Biomath. 40 (1981) 21–45.
  29. S.A. Levin and C.P. Goodyear, Analysis of an age-structured fishery model. J. Math. Biol. 9 (1980) 245–274. [CrossRef] [MathSciNet]
  30. T. Lindstrom, Dependencies between competition and predation-and their consequences for initial value sensitivity. SIAM J. Appl. Math. 59 (1999) 1468–1486. [CrossRef] [MathSciNet]
  31. J.A.J. Metz and O. Diekmann, The dynamics of physiologically structured populations. Springer, Berlin, Heidelberg, New York, Lecture notes Biomath. 68 (1986).
  32. A.J. Nicholson, An outline of the dynamics of animal populations. Aust. J. Zool. 2 (1954) 9–65. [CrossRef]
  33. A.J. Nicholson, The self adjustment of populations to change. Cold Spring Harbor Symp. Quant. Biol. 22 (1957) 153–173.
  34. J.C. Panetta, A mathematical model of periodically pulsed chemotherapy: tumor recurrence and metastasis in a competition environment. Bull. Math. Biol. 58 (1996) 425–447. [CrossRef] [PubMed]
  35. B. Shulgin, L. Stone and Z. Agur, Pulse vaccination strategy in the SIR epidemic model. Bull. Math. Biol. 60 (1998) 1–26. [CrossRef] [PubMed]
  36. S.Y. Tang and L.S. Chen, Density-dependent birth rate, birth pulses and their population dynamic consequences. J. Math. Biol. 44 (2002) 185–199. [CrossRef] [MathSciNet] [PubMed]
  37. G. Uribe, On the relationship between continuous and discrete models for size-structured population dynamics. Ph.D. dissertation, Interdisciplinary program in applied mathematics, University of Arizona, Tucson, USA (1993).

Recommended for you