Free access
Issue
ESAIM: M2AN
Volume 37, Number 4, July-August 2003
Special issue on Biological and Biomedical Applications
Page(s) 709 - 723
DOI http://dx.doi.org/10.1051/m2an:2003045
Published online 15 November 2003
  1. N. Bellomo and L. Preziosi, Modeling and mathematical problems related to tumors immune system interactions. Math. Comput. Model. 31 (2000) 413-452. [CrossRef]
  2. R. Bürger,The mathematical theory of selection, recombination and mutation. Wiley (2000).
  3. M.A.J. Chaplain Ed., Special Issue on Mathematical Models for the Growth, Development and Treatment of Tumours. Math. Mod. Meth. Appl. S. 9 (1999).
  4. E. De Angelis and P.-E. Jabin, Analysis of a mean field modelling of tumor and immune system competition. Math. Mod. Meth. Appl. S. 13 (2003) 187-206. [CrossRef]
  5. P. Degond and B. Lucquin-Desreux, The Fokker-Plansk asymptotics of the Boltzmann collision operator in the Coulomb case? Math. Mod. Meth. Appl. S. 2 (1992) 167-182.
  6. O. Dieckmann and J.P. Heesterbeek, Mathematical Epidemiology of infectious Diseases. Wiley, New York (2000).
  7. O. Diekmann, P.-E. Jabin, S. Mischler and B. Perthame, Adaptive dynamics without time scale separation. Work in preparation.
  8. A. Lins, W. de Melo and C.C. Pugh, On Liénard's equation. Lecture Notes in Math. 597 (1977) 334-357.
  9. R.M. May and M.A. Nowak, Virus dynamics (mathematical principles of immunology and virology). Oxford Univ. Press (2000).
  10. A.S. Perelson and G. Weisbuch, Immunology for physicists. Rev. modern phys. 69 (1997) 1219-1267. [CrossRef]
  11. J. Salda na, S.F. Elana and R.V. Solé, Coinfection and superinfection in RNA virus populations: a selection-mutation model. Math. Biosci. 183 (2003) 135-160. [CrossRef] [MathSciNet] [PubMed]
  12. C.H. Taubes, Modeling lectures on differential equations in biology. Prentice-Hall (2001).
  13. C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of fluid mechanics, S. Friedlander and D. Serre Eds., Vol. 1. North-Holland, Amsterdam (2000) 71-305.
  14. D. Waxman, A model of population genetics and its mathematical relation to quantum theory. Contemp. phys. 43 (2002) 13-20. [CrossRef]

Recommended for you