Free access
Issue
ESAIM: M2AN
Volume 37, Number 5, September-October 2003
Page(s) 833 - 850
DOI http://dx.doi.org/10.1051/m2an:2003057
Published online 15 November 2003
  1. D.A. Adams, Sobolev Spaces. Academic Press, New York (1975).
  2. N. Arada, H. El Fekih and J.-P. Raymond, Asymptotic analysis of some control problems. Asymptot. Anal. 24 (2000) 343-366. [MathSciNet]
  3. I. Babuska, The finite element method with penalty. Math. Comp. 27 (1973) 221-228. [CrossRef] [MathSciNet]
  4. F. Ben Belgacem, H. El Fekih and J.-P. Raymond, A penalized Robin approach for solving a parabolic equation with nonsmooth Dirichlet boundary conditions. Asymptot. Anal. 34 (2003) 121-136. [MathSciNet]
  5. M. Bergounioux and K. Kunisch, Augmented Lagrangian techniques for elliptic state constrained optimal control problems. SIAM J. Control Optim. 35 (1997) 1524-1543. [CrossRef] [MathSciNet]
  6. A. Bossavit, Approximation régularisée d'un problème aux limites non homogène. Séminaire J.-L. Lions 12 (Avril 1969).
  7. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag (1991).
  8. P. Colli Franzoni, Approssimazione mediante il metodo de penalizazione de problemi misti di Dirichlet-Neumann per operatori lineari ellittici del secondo ordine. Boll. Un. Mat. Ital. A (7) 4 (1973) 229-250.
  9. P. Colli Franzoni, Approximation of optimal control problems of systems described by boundary value mixed problems of Dirichlet-Neumann type, in 5th IFIP Conference on Optimization Techniques. Springer, Berlin, Lecture Notes in Computer Science 3 (1973) 152-162.
  10. M. Costabel and M. Dauge, A singularly perturbed mixed boundary value problem. Commun. Partial Differential Equations 21 1919-1949 (1996).
  11. M. Dauge, Elliptic boundary value problems on corner domains. Smoothness and asymptotics of solutions. Springer-Verlag, Lecture Notes in Math. 1341 (1988).
  12. P. Grisvard, Singularities in boundary value problems. Masson (1992).
  13. L.S. Hou and S.S. Ravindran, A penalized Neumann control approach for solving an optimal Dirichlet control problem for the Navier-Stokes equations. SIAM J. Control Optim. 20 (1998) 1795-1814.
  14. L.S. Hou and S.S. Ravindran, Numerical approximation of optimal flow control problems by a penalty method: error estimates and numerical results. SIAM J. Sci. Comput. 20 (1999) 1753-1777. [CrossRef] [MathSciNet]
  15. A. Kirsch, The Robin problem for the Helmholtz equation as a singular perturbation problem. Numer. Funct. Anal. Optim. 8 (1985) 1-20. [CrossRef] [MathSciNet]
  16. I. Lasiecka and J. Sokolowski, Semidiscrete approximation of hyperbolic boundary value problem with nonhomogeneous Dirichlet boundary conditions. SIAM J. Math. Anal. 20 (1989) 1366-1387. [CrossRef] [MathSciNet]
  17. J.-L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod (1968).
  18. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vols. 1 and 2. Dunod, Paris (1968).
  19. T. Masrour, Contrôlabilité et observabilité des sytèmes distribués, problèmes et méthodes. Thesis, École Nationale des Ponts et Chaussées. Paris (1995).

Recommended for you