Free access
Issue
ESAIM: M2AN
Volume 37, Number 6, November-December 2003
Page(s) 991 - 1011
DOI http://dx.doi.org/10.1051/m2an:2003064
Published online 15 November 2003
  1. F. Ben Belgacem, A stabilized domain decomposition method with non-matching grids to the Stokes problem in three dimensions. SIAM. J. Numer. Anal. (to appear).
  2. F. Ben Belgacem and S.C. Brenner, Some nonstandard finite element estimates with applications to 3D Poisson and Signorini problems. Electron. Trans. Numer. Anal. 37 (2000) 1198–1216. [CrossRef] [MathSciNet]
  3. F. Ben Belgacem and Y. Maday, The mortar element method for three dimensional elements. RAIRO Modél. Anal. Numér. 31 (1997) 289–302.
  4. C. Bernardi and F. Hecht, Error indicators for the mortar finite element discretization of the Laplace equation. Math. Comp. 71 (2002) 1339–1370. [MathSciNet]
  5. C. Bernardi and V. Girault, A local regularization operator for triangular and quadrilateral finite elements. SIAM. J. Numer. Anal. 35 (1998) 1893–1916 [CrossRef] [MathSciNet]
  6. C. Bernardi and Y. Maday, Mesh adaptivity in finite elements by the mortar method. Rev. Européeenne Élém. Finis 9 (2000) 451–465.
  7. C. Bernardi, Y. Maday and A.T. Patera, A New Non Conforming Approach to Domain Decomposition: The Mortar Element Method. Collège de France Seminar, Pitman, H. Brezis, J.-L. Lions (1990).
  8. F. Brezzi, L.P. Franca, D. Marini and A. Russo, Stabilization techniques for domain decomposition with non-matching grids, Domain Decomposition Methods in Sciences and Engineering, P. Bjostrad, M. Espedal, D. Keyes Eds., Domain Decomposition Press, Bergen (1998) 1–11.
  9. P.G. Ciarlet, Basic error estimates for elliptic problems, in The Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet, J.-L. Lions Eds., North-Holland (1991) 17–351.
  10. V. Girault and P.A. Raviart, Finite Element Methods for the Navier–Stokes Equations. Springer-Verlag (1986).
  11. P.A. Raviart and J.M. Thomas, Primal hybrid finite element method for 2nd order elliptic equations. Math. Comp. 31 (1977) 391–396. [MathSciNet]
  12. L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483–493. [CrossRef] [MathSciNet]
  13. R. Verfürth, Error estimates for some quasi-interpolation operators. Modél. Math. Anal. Numér. 33 (1999) 695–713. [CrossRef] [EDP Sciences]
  14. R. Verfürth, A Review of A posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley & Teubner (1996).
  15. O.B. Widlund, An extention theorem for finite element spaces with three applications, in Numerical Techniques in Continuum Mechanics, Proceedings of the Second GAMM Seminar, W Hackbush, K. Witsch Eds., Kiel (1986).
  16. B. Wohlmuth, A residual based error estimator for mortar finite element discretization. Numer. Math. 84 (1999) 143–171. [CrossRef] [MathSciNet]

Recommended for you