Free access
Issue
ESAIM: M2AN
Volume 37, Number 6, November-December 2003
Page(s) 1013 - 1043
DOI http://dx.doi.org/10.1051/m2an:2003065
Published online 15 November 2003
  1. M. Ainsworth and J.T. Oden, A posteriori error estimation in finite element analysis. Wiley (2000).
  2. Th. Apel, Anisotropic finite elements: Local estimates and applications, Advances in Numerical Mathematics. Teubner, Stuttgart (1999).
  3. I. Babuška, T. Strouboulis and C.S. Upadhyay, A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles. Comput. Methods Appl. Mech. Engrg. 114 (1994) 307–378. [CrossRef] [MathSciNet]
  4. I. Babuška, T. Strouboulis, C.S. Upadhyay, S.K. Gangaraj and K. Copps, Validation of a posteriori error estimators by numerical approach. Int. J. Numer. Methods Eng. 37 (1994) 1073–1123. [CrossRef]
  5. S. Bartels and C. Carstensen, Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: High order FEM. Math. Comp. 71 (2002) 971–994. [CrossRef] [MathSciNet]
  6. J.H. Bramble, J.E. Pasciak and O. Steinbach, On the stability of the L2-projection in Formula . Math. Comp. 71 (2002) 147–156. [CrossRef] [MathSciNet]
  7. C. Carstensen, Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for H1-stability of the L2-projection onto finite element spaces. Math. Comp. 71 (2002) 157–163. [CrossRef] [MathSciNet]
  8. C. Carstensen and S. Bartels, Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM. Math. Comp. 71 (2002) 945–969. [CrossRef] [MathSciNet]
  9. P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978).
  10. M. Dobrowolski, S. Gräf and C. Pflaum, On a posteriori error estimators in the finite element method on anisotropic meshes. Electron. Trans. Numer. Anal. 8 (1999) 36–45. [MathSciNet]
  11. G. Kunert, A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes. Logos Verlag, Berlin (1999). Also Ph.D. thesis, TU Chemnitz, http://archiv.tu-chemnitz.de/pub/1999/0012/index.html
  12. G. Kunert, An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes. Numer. Math. 86 (2000) 471–490, DOI 10.1007/s002110000170. [CrossRef] [MathSciNet]
  13. G. Kunert, A local problem error estimator for anisotropic tetrahedral f inite element meshes. SIAM J. Numer. Anal. 39 (2001) 668–689. [CrossRef] [MathSciNet]
  14. G. Kunert, A posteriori L2 error estimation on anisotropic tetrahedral finite element meshes. IMA J. Numer. Anal. 21 (2001) 503–523. [CrossRef] [MathSciNet]
  15. G. Kunert, Robust a posteriori error estimation for a singularly perturbed reaction–diffusion equation on anisotropic tetrahedral meshes. Adv. Comput. Math. 15 (2001) 237–259. [CrossRef] [MathSciNet]
  16. G. Kunert and S. Nicaise, Zienkiewicz–Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes, preprint SFB393/01–20, TU Chemnitz, July 2001. Also http://archiv.tu-chemnitz.de/pub/2001/0059/index.html
  17. G. Kunert and R. Verfürth, Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes. Numer. Math. 86 (2000) 283–303, DOI 10.1007/s002110000152. [CrossRef] [MathSciNet]
  18. L.A. Oganesyan and L.A. Rukhovets, Variational-difference methods for the solution of elliptic equations. Izd. Akad. Nauk Armyanskoi SSR, Jerevan (1979), in Russian.
  19. G. Raugel, Résolution numérique par une méthode d'éléments finis du problème de Dirichlet pour le Laplacien dans un polygone. C. R. Acad. Sci. Paris, Sér. I Math 286 (1978) A791–A794.
  20. R. Rodriguez, Some remarks on the Zienkiewicz–Zhu estimator. Numer. Meth. PDE 10 (1994) 625–635. [CrossRef]
  21. H.G. Roos and T. Linß, Gradient recovery for singularly perturbed boundary value problems II: Two-dimensional convection-diffusion. Math. Models Methods Appl. Sci. 11 (2001) 1169–1179. [CrossRef] [MathSciNet]
  22. K.G. Siebert, An a posteriori error estimator for anisotropic refinement. Numer. Math. 73 (1996) 373–398. [CrossRef] [MathSciNet]
  23. O. Steinbach, On the stability of the L2-projection in fractional Sobolev spaces. Numer. Math. 88 (2001) 367–379. [CrossRef] [MathSciNet]
  24. R. Verfürth, A review of a posteriori error estimation and adaptive mesh–refinement techniques. Wiley-Teubner, Chichester, Stuttgart (1996).
  25. Zh. Zhang, Superconvergent finite element method on a Shishkin mesh for convection-diffusion problems. Report 98-006, Texas Tech University (1998).
  26. O.C. Zienkiewicz and J.Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis. Internat. J. Numer. Methods Engrg. 24 (1987) 337–357. [CrossRef] [MathSciNet]
  27. O.C. Zienkiewicz and J.Z. Zhu, The superconvergent patch recovery (SPR) and adaptive finite element refinement. Comput. Methods Appl. Mech. Engrg. 101 (1992) 207–224. [CrossRef] [MathSciNet]

Recommended for you