Free access
Issue
ESAIM: M2AN
Volume 38, Number 1, January-February 2004
Page(s) 157 - 175
DOI http://dx.doi.org/10.1051/m2an:2004008
Published online 15 February 2004
  1. N. Bartoli and F. Collino, Integral equations via saddle point problem for 2D electromagnetic problems. ESAIM: M2AN 34 (2000) 1023–1049. [CrossRef] [EDP Sciences]
  2. L. Boutet de Monvel, Boundary problems for pseudo-differential operators. Acta Math. 126 (1971) 11–51. [MathSciNet]
  3. F. Canning, Improved impedance matrix localisation method. IEEE Trans. Ant. Prop. 41 (1993) 659–667. [CrossRef]
  4. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory. Springer-Verlag (1992).
  5. A. de La Boudonnaye, High frequency approximation of integral equations modelling scattering phenomena. RAIRO Modél. Math. Anal. Numér. 28 (1994) 223–241. [MathSciNet]
  6. B. Després, Fonctionnelle quadratique et équations intégrales pour les équations de Maxwell harmoniques en domaine extérieur. C.R. Acad. Sciences, Série I 323 (1996) 547–552.
  7. L. Hörmander, Fourier Integral Operators. Springer-Verlag (1994).
  8. F. Hu, A spectral boundary integral equation method for the 2D Helmholtz equation. J. Comput. Phys. 120 (1995) 340–347. [CrossRef] [MathSciNet]
  9. D. Levadoux, Étude d'une équation intégrale adaptée à la résolution hautes fréquences de l'équation de Helmholtz. Thèse de doctorat, Université Paris VI, France (2001).
  10. D. Levadoux and B. Michielsen, Analysis of a boundary integral equation for high frequency Helmholtz problems. Fourth International Conf. Mathematical and Numerical Aspects of Wave Propagation, Colorado, 1–5 June (1998).
  11. V. Rokhlin, Diagonal form of translation operators for the Helmholtz equation in three dimensions. Rapport technique YALEU/DCS/RR-894, Yale University, Department of Computer Science (1992).
  12. L. Schwartz, Théorie des Distributions. Hermann (1966).

Recommended for you