Free access
Issue
ESAIM: M2AN
Volume 38, Number 2, March-April 2004
Page(s) 211 - 234
DOI http://dx.doi.org/10.1051/m2an:2004010
Published online 15 March 2004
  1. V.I. Agoshkov, D. Ambrosi, V. Pennati, A. Quarteroni and F. Saleri, Mathematical and numerical modelling of shallow water flow. Comput. Mech. 11 (1993) 280–299.
  2. V.I. Agoshkov, A. Quarteroni and F. Saleri, Recent developments in the numerical simulation of shallow water equations. Boundary conditions. Appl. Numer. Math. 15 (1994) 175–200.
  3. J.P. Benque, J.A. Cunge, J. Feuillet, A. Hauguel and F.M. Holly, New method for tidal current computation. J. Waterway, Port, Coastal and Ocean Division, ASCE 108 (1982) 396–417.
  4. J.P. Benque, A. Haugel and P.L. Viollet, Numerical methods in environmental fluid mechanics. M.B. Abbot and J.A. Cunge Eds., Eng. Appl. Comput. Hydraulics II (1982) 1–10.
  5. S. Ferrari, A new two-dimensional Shallow Water model: physical, mathematical and numerical aspects Ph.D. Thesis, a.a. 2002/2003, Dottorato M.A.C.R.O., Università degli Studi di Milano.
  6. S. Ferrari, Convergence analysis of a space-time approximation to a two-dimensional system of Shallow Water equations. Internat. J. Appl. Analysis (to appear).
  7. J.F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation. Discrete Contin. Dyn. Syst. Ser. B 1 (2001) 89–102. [CrossRef] [MathSciNet]
  8. R.H. Goodman, A.J. Majda and D.W. Mclaughlin, Modulations in the leading edges of midlatitude storm tracks. SIAM J. Appl. Math. 62 (2002) 746–776.
  9. E. Grenier, Boundary layers for parabolic regularizations of totally characteristic quasilinear parabolic equations. J. Math. Pures Appl. 76 (1997) 965–990.
  10. E. Grenier and O. Guès, Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems. J. Differential Equations 143 (1998) 110–146. [CrossRef] [MathSciNet]
  11. O. Guès, Perturbations visqueuses de problèmes mixtes hyperboliques et couches limites. Grenoble Ann. Inst. Fourier 45 (1995) 973–1006.
  12. M.E. Gurtin, An introduction to continuum mechanics. Academic Press, New York (1981).
  13. F. Hecht and O. Pironneau, FreeFem++:Manual version 1.23, 13-05-2002. FreeFem++ is a free software available at: http://www-rocq.inria.fr/Frederic.Hecht/freefem++.htm
  14. J.M. Hervouet and A. Watrin, Code TELEMAC (système ULYSSE) : Résolution et mise en œuvre des équations de Saint-Venant bidimensionnelles, Théorie et mise en œuvre informatique, Rapport EDF HE43/87.37 (1987).
  15. S. Jin, A steady-state capturing method for hyperbolic systems with geometrical source terms. ESAIM: M2AN 35 (2001) 631–645. [CrossRef] [EDP Sciences]
  16. A. Kurganov and L. Doron, Central-upwind schemes for the Saint-Venant system. ESAIM: M2AN 36 (2002) 397–425. [CrossRef] [EDP Sciences]
  17. O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Ural'ceva, Linear and quasilinear equations of parabolic type. Providence, Rhode Island. Amer. Math. Soc. (1968).
  18. D. Levermore and M. Sammartino, A shallow water model with eddy viscosity for basins with varying bottom topography. Nonlinearity 14 (2001) 1493–1515. [CrossRef] [MathSciNet]
  19. E. Miglio, A. Quarteroni and F. Saleri, Finite element approximation of a quasi–3D shallow water equation. Comput. Methods Appl. Mech. Engrg. 174 (1999) 355–369. [CrossRef] [MathSciNet]
  20. J. Rauch and F. Massey, Differentiability of solutions to hyperbolic initial-boundary value problems. Trans. Amer. Math. Soc. 189 (1974) 303–318. [MathSciNet]
  21. M. Sammartino and R.E. Caflisch, Zero viscosity limit for analytic solutions of the Navier–Stokes equations on a half-space. I. Existence for Euler and Prandtl Equations; II. Construction of the Navier–Stokes solution. Comm. Math. Physics 192 (1998) 433–461 and 463–491. [CrossRef]
  22. D. Serre, Sytems of conservation laws. I and II, Cambridge University Press, Cambridge (1996).
  23. G.B. Whitham, Linear and nonlinear waves. John Wiley & Sons, New York (1974).

Recommended for you