Free access
Issue
ESAIM: M2AN
Volume 38, Number 2, March-April 2004
Page(s) 235 - 248
DOI http://dx.doi.org/10.1051/m2an:2004011
Published online 15 March 2004
  1. A. Aharoni, Introduction to the theory of ferromagnetism. Oxford Ed., Clarendon Press (1996).
  2. A. Aharoni, Angular dependence of nucleation by curling in a prolate spheroid. J. Appl. Phys. 82 (1997) 1281–1287.
  3. F. Alouges, A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J. Numer. Anal. 34 (1997) 1708–1726.
  4. F. Alouges, Computation of demagnetizing field in micromagnetics with the infinite elements method. ESAIM: COCV 6 (2001) 629–647. [CrossRef] [EDP Sciences]
  5. A. Bagnérés-Viallix, P. Baras and J.B. Albertini, 2d and 3d calculations of micromagnetic wall structures using finite elements. IEEE Trans. Magn. 27 (1991) 3819–3822.
  6. G. Bertotti, Hysteresis in magnetism. Academic Press, San Diego (1998).
  7. E. Bonet, W. Wernsdorfer, B. Barbara, A. Benoît, D. Mailly and A. Thiaville, Three-dimensional magnetization reversal measurements in nanoparticles. Phys. Rev. Lett. 83 (1999) 4188–4191.
  8. W.F. Brown, Criterion for uniform micromagnetization. Phys. Rev. 105 (1957) 1479–1482. [CrossRef]
  9. T. Chang, J.-G. Zhu and J.H. Judy, Method for investigating the reversal properties of isolated barium ferrite fine particles utilizing magnetic force microscopy (mfm). J. Appl. Phys. 73 (1993) 6716–6718.
  10. W. Chen, D.R. Fredkin and T.R. Koehler, A new finite element method in micromagnetics. IEEE Trans. Magn. 29 (1993) 2124–2128.
  11. Y.M. Chen, The weak solutions to the evolution problems of harmonic maps. Math. Z. 201 (1989) 69–74.
  12. A. DeSimone, Hysteresis and imperfection sensitivity in small ferromagnetic particles. Meccanica 30 (1995) 591–603. [CrossRef] [MathSciNet]
  13. D.R. Fredkin and T.R. Koehler, Finite element methods for micromagnetics. IEEE Trans. Magn. 28 (1992) 1239–1244.
  14. E.H. Frei, S. Shtrikman and D. Treves, Critical size and nucleation field of ideal ferromagnetic particles. Phys. Rev. 106 (1957) 446–454.
  15. R. Hertel and H. Kronmüller, Finite element calculations on the single-domain limit of a ferromagnetic cube – a solution to µmag standard problem no. 3. J. Magn. Magn. Mat. 238 (2002) 185–199.
  16. A. Hubert and R. Schäfer, Magnetic domains. Springer, Berlin (1998).
  17. Y. Ishii, Magnetization curling in an infinite cylinder with a uniaxial magnetocrystalline anisotropy. J. Appl. Phys. 70 (1991) 3765–3769.
  18. R.D. McMichael, Standard problem number 3, problem specification and reported solutions, Micromagnetic Modeling Activity Group, www.crcms.nist.gov/~rdm/mumag.html (1998).
  19. A.J. Newell and R.T. Merrill, The curling nucleation mode in a ferromagnetic cube. J. Appl. Phys. 84 (1998) 4394–4402.
  20. R. O'Barr, M. Lederman, S. Schultz, W. Xu, A. Scherer and R.J. Tonucci, Preparation and quantitative magnetic studies of single-domain nickel cylinders. J. Appl. Phys. 79 (1996) 5303–5305.
  21. W. Rave, K. Fabian and A. Hubert, Magnetic states of small cubic particles with uniaxial anisotropy. J. Magn. Magn. Mat. 190 (1998) 332–348.
  22. F. Rogier, S. Labbé and P.Y. Bertin, Schéma en temps et calcul du champ démagnétisant pour le micromagnétisme. NUMELEC'97, École Centrale de Lyon (1997).
  23. M.E. Schabes and H.N. Bertram, Magnetization processes in ferromagnetic cubes. J. Appl. Phys. 64 (1988) 1347–1357.
  24. E.C. Stoner and E.P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys. Phil. Trans. R. Soc. London Ser. A 240 (1948) 599–642.
  25. A. Thiaville, Coherent rotation of magnetization in three dimensions: a geometrical approach. Phys. Rev. B 61 (2000) 12221. [CrossRef]
  26. L.A. Ying, Infinite elements method. Beijing University Press (1995).

Recommended for you