Free access
Issue
ESAIM: M2AN
Volume 38, Number 3, May-June 2004
Page(s) 477 - 493
DOI http://dx.doi.org/10.1051/m2an:2004024
Published online 15 June 2004
  1. R. Abgrall and S. Karni, Computations of compressible multifluids. J. Comput. Phys. 169 (2001) 594–623. [CrossRef] [MathSciNet]
  2. R. Abgrall and R. Saurel, Discrete equations for physical and numerical compressible multiphase flow mixtures. J. Comput. Phys. 186 (2003) 361–396. [CrossRef] [MathSciNet]
  3. F. Coquel, K. El Amine, E. Godlewski, B. Perthame and P. Rascle, A numerical method using upwind schemes for the resolution of two-phase flows. J. Comput. Phys. 136 (1997) 272–288. [CrossRef] [MathSciNet]
  4. D.A. Drew, Mathematical modelling of tow-phase flow. Ann. Rev. Fluid Mech. 15 (1983) 261–291. [CrossRef]
  5. B. Einfeldt, C.-D. Munz, P.L. Roe and B. Sjogreen, On Godunov-type methods near low densities. J. Comput. Phys. 92 (1991) 273–295. [NASA ADS] [CrossRef] [MathSciNet]
  6. A. Harten and S. Osher, Uniformly high-order accurate nonoscillatory schemes. I. SIAM J. Numer. Anal. 24 (1987) 279–309. [CrossRef] [MathSciNet]
  7. S. Karni, Multi-component flow calculations by a consistent primitive algorithm. J. Comput. Phys. 112 (1994) 31–43. [CrossRef] [MathSciNet]
  8. A. Kurganov and D. Levy, Central-upwind schemes for the Saint-Venant system. ESAIM: M2AN 36 (2002) 397–425. [CrossRef] [EDP Sciences]
  9. A. Kurganov, S. Noelle and G. Petrova, Semi-discrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 23 (2001) 707–740. [CrossRef] [MathSciNet]
  10. A. Kurganov and G. Petrova, Central schemes and contact discontinuities. ESAIM: M2AN 34 (2000) 1259–1275. [CrossRef] [EDP Sciences]
  11. B. van Leer, Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov's method. J. Comput. Phys. 32 (1979) 101–136. [NASA ADS] [CrossRef]
  12. H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87 (1990) 408–463. [CrossRef] [MathSciNet]
  13. V.H. Ransom, Numerical benchmark tests, G.F. Hewitt, J.M. Delhay and N. Zuber Eds., Hemisphere, Washington, DC Multiphase Science and Technology 3 (1987).
  14. P.-A. Raviart and L. Sainsaulieu, Nonconservative hyperbolic systems and two-phase flows, International Conference on Differential Equations (Barcelona, 1991) World Sci. Publishing, River Edge, NJ 1, 2 (1993) 225–233.
  15. P.-A. Raviart and L. Sainsaulieu, A nonconservative hyperbolic system modeling spray dynamics. I. Solution of the Riemann problem. Math. Models Methods Appl. Sci. 5 (1995) 297–333. [CrossRef] [MathSciNet]
  16. P.L. Roe, Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43 (1981) 357–372. [NASA ADS] [CrossRef] [MathSciNet]
  17. P.L. Roe, Fluctuations and signals - A framework for numerical evolution problems, in Numerical Methods for Fluid Dynamics, K.W. Morton and M.J. Baines Eds., Academic Press (1982) 219–257.
  18. P.L. Roe and J. Pike, Efficient construction and utilisation of approximate Riemann solutions, in Computing methods in applied sciences and engineering, VI (Versailles, 1983) North-Holland, Amsterdam (1984) 499–518.
  19. L. Sainsaulieu, Finite volume approximations of two-phase fluid flows based on an approximate Roe-type Riemann solver. J. Comput. Phys. 121 (1995) 1–28. [CrossRef] [MathSciNet]
  20. R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150 (1999) 425–467. [CrossRef] [MathSciNet]
  21. H.B. Stewart and B. Wendroff, Two-phase flow: models and methods. J. Comput. Phys. 56 (1984) 363–409. [CrossRef] [MathSciNet]
  22. I. Toumi and A. Kumbaro, An approximate linearized Riemann solver for a two-fluid model. J. Comput. Phys. 124 (1996) 286–300. [CrossRef] [MathSciNet]

Recommended for you