Free access
Issue
ESAIM: M2AN
Volume 38, Number 3, May-June 2004
Page(s) 437 - 455
DOI http://dx.doi.org/10.1051/m2an:2004021
Published online 15 June 2004
  1. A. Bergam, C. Bernardi and Z. Mghazli, A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comput. (to appear).
  2. C. Bernardi and B. Métivet, Indicateurs d'erreur pour l'équation de la chaleur. Rev. Européenne Élém. Finis 9 (2000) 425–438.
  3. C. Bernardi, B. Métivet and R. Verfürth, Analyse numérique d'indicateurs d'erreur, in Maillage et adaptation. P.-L. George Ed., Hermès (2001) 251–278.
  4. M. Bieterman and I. Babuška, The finite element method for parabolic equations. I. A posteriori error estimation. Numer. Math. 40 (1982) 339–371. [CrossRef] [MathSciNet]
  5. M. Bieterman and I. Babuška, The finite element method for parabolic equations. II. A posteriori error estimation and adaptive approach. Numer. Math. 40 (1982) 373–406. [CrossRef] [MathSciNet]
  6. P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77–84.
  7. K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal. 28 (1991) 43–77. [CrossRef] [MathSciNet]
  8. K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. IV. Nonlinear problems. SIAM J. Numer. Anal. 32 (1995) 1729–1749. [CrossRef] [MathSciNet]
  9. V. Girault and P.-A. Raviart, Finite Element Approximation of the Navier–Stokes Equations. Springer-Verlag, Lect. Notes Math. 749 (1979).
  10. J.G. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier–Stokes problem. Part IV: Error analysis for second-order time discretization. SIAM J. Numer. Anal. 27 (1990) 353–384. [CrossRef] [MathSciNet]
  11. C. Johnson, Y.-Y. Nie and V. Thomée, An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem. SIAM J. Numer. Anal. 27 (1990) 277–291. [CrossRef] [MathSciNet]
  12. M. Picasso, Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Engrg. 167 (1998) 223–237. [CrossRef] [MathSciNet]
  13. J. Pousin and J. Rappaz, Consistency, stability, a priori and a posteriori errors for Petrov–Galerkin methods applied to nonlinear problems. Numer. Math. 69 (1994) 213–231. [CrossRef] [MathSciNet]
  14. R. Temam, Theory and Numerical Analysis of the Navier–Stokes Equations. North-Holland (1977).
  15. R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley & Teubner (1996).
  16. R. Verfürth, A posteriori error estimates for nonlinear problems: Formula –error estimates for finite element discretizations of parabolic equations. Numer. Methods Partial Differential Equations 14 (1998) 487–518. [CrossRef] [MathSciNet]
  17. R. Verfürth, A posteriori error estimates for nonlinear problems. Formula –error estimates for finite element discretizations of parabolic equations. Math. Comp. 67 (1998) 1335–1360. [CrossRef] [MathSciNet]
  18. R. Verfürth, Error estimates for some quasi-interpolation operators. ESAIM: M2AN 33 (1999) 695–713. [CrossRef] [EDP Sciences]
  19. R. Verfürth, A posteriori error estimation techniques for non-linear elliptic and parabolic pdes, Rev. Européenne Élém. Finis 9 (2000) 377–402.

Recommended for you