Free access
Issue
ESAIM: M2AN
Volume 38, Number 3, May-June 2004
Page(s) 495 - 517
DOI http://dx.doi.org/10.1051/m2an:2004023
Published online 15 June 2004
  1. P.J. Davis, Circulant Matrices, John Wiley & Sons, New York (1979).
  2. A. Doicu, Y. Eremin and T. Wriedt, Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources. Academic Press, New York (2000).
  3. G. Fairweather and A. Karageorghis, The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math. 9 (1998) 69–95. [CrossRef] [MathSciNet]
  4. G. Fairweather, A. Karageorghis and P.A. Martin, The method of fundamental solutions for scattering and radiation problems. Eng. Anal. Bound. Elem. 27 (2003) 759–769. [CrossRef]
  5. M.A. Golberg and C.S. Chen, Discrete Projection Methods for Integral Equations. Computational Mechanics Publications, Southampton (1996).
  6. M.A. Golberg and C.S. Chen, The method of fundamental solutions for potential, Helmholtz and diffusion problems, in Boundary Integral Methods and Mathematical Aspects, M.A. Golberg Ed., WIT Press/Computational Mechanics Publications, Boston (1999) 103–176.
  7. I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, London (1980).
  8. M. Katsurada, A mathematical study of the charge simulation method II. J. Fac. Sci., Univ. of Tokyo, Sect. 1A, Math. 36 (1989) 135–162.
  9. M. Katsurada and H. Okamoto, A mathematical study of the charge simulation method I. J. Fac. Sci., Univ. of Tokyo, Sect. 1A, Math. 35 (1988) 507–518.
  10. J.A. Kolodziej, Applications of the Boundary Collocation Method in Applied Mechanics, Wydawnictwo Politechniki Poznanskiej, Poznan (2001) (In Polish).
  11. R. Mathon and R.L. Johnston, The approximate solution of elliptic boundary–value problems by fundamental solutions. SIAM J. Numer. Anal. 14 (1977) 638–650. [CrossRef] [MathSciNet]
  12. Y.S. Smyrlis and A. Karageorghis, Some aspects of the method of fundamental solutions for certain harmonic problems. J. Sci. Comput. 16 (2001) 341–371. [CrossRef] [MathSciNet]
  13. Y.S. Smyrlis and A. Karageorghis, Numerical analysis of the MFS for certain harmonic problems. Technical Report TR/04/2003, Dept. of Math. & Stat., University of Cyprus.

Recommended for you