Free access
Issue
ESAIM: M2AN
Volume 38, Number 3, May-June 2004
Page(s) 563 - 578
DOI http://dx.doi.org/10.1051/m2an:2004026
Published online 15 June 2004
  1. R.A. Adams, Sobolev Spaces. Academic Press (1975).
  2. G. Amontons, Sur l'origine de la résistance dans les machines. Mémoires de l'Académie Royale (1699) 206–222.
  3. L. Baillet and T. Sassi, Méthodes d'éléments finis avec hybridisation frontière pour les problèmes de contact avec frottement. C.R. Acad. Sci. Paris, Ser. I 334 (2002) 917–922.
  4. G. Bayada, M. Chambat, K. Lhalouani and T. Sassi, Éléments finis avec joints pour des problèmes de contact avec frottement de Coulomb non local. C.R. Acad. Sci. Paris, Ser. I 325 (1997) 1323–1328.
  5. P.-G. Ciarlet, The finite element method for elliptic problems, Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions Eds., Vol. 2, Part 1, North-Holland (1991) 17–352.
  6. C.A. Coulomb, Théorie des machines simples. Mémoire de Mathématique et de Physique de l'Académie Royale 10 (1785) 145–173.
  7. Z. Dostál, Box constrained quadratic programming with proportioning and projections. SIAM J. Opt. 7 (1997) 871–887. [CrossRef] [MathSciNet]
  8. G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique. Dunod, Paris (1972).
  9. I. Ekeland and R. Temam, Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976).
  10. R. Glowinski, Numerical methods for nonlinear variational problems. Springer, New York (1984).
  11. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Monogr. Studies Math., Pitman 24 (1985).
  12. J. Haslinger and I. Hlaváček, Approximation of the Signorini problem with friction by mixed finite element method, J. Math. Anal. Appl. 86 (1982) 99–122.
  13. J. Haslinger and P.D. Panagiolopoulas, Approximation of contact problems with friction by reciprocal variational formulations. Proc. Roy. Soc. Edinburgh 98A (1984) 365–383.
  14. J. Haslinger, I. Hlaváček and J. Nečas, Numerical methods for unilateral problems in solid mechanics, Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions Eds., Vol. 4, Part 2, North-Holland (1996) 313–485.
  15. J. Haslinger, R. Kučera and Z. Dostál, An algorithm for numerical realization of 3D contact problems with Coulomb friction. J. Comput. Appl. Math. 164-165 (2004) 387–408. [CrossRef]
  16. P. Hild, À propos d'approximation par éléments finis optimale pour les problèmes de contact unilatéral. C.R. Acad. Sci. Paris, Ser. I 326 (1998) 1233–1236.
  17. N. Kikuchi and J.T. Oden, Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM, Philadelphia (1988).
  18. D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications. Academic Press (1980).
  19. K. Lhalouani and T. Sassi, Nonconforming mixed variational formulation and domain decomposition for unilateral problems. East-West J. Numer. Math. 7 (1999) 23–30. [MathSciNet]

Recommended for you