Free access
Issue
ESAIM: M2AN
Volume 38, Number 4, July-August 2004
Page(s) 653 - 672
DOI http://dx.doi.org/10.1051/m2an:2004028
Published online 15 August 2004
  1. A. Alonso, A. Dello Russo, C. Otero-Souto, C. Padra and R. Rodríguez, An adaptive finite element scheme to solve fluid-structure vibration problems on non-matching grids. Comput. Visual. Sci. 4 (2001) 67–78. [CrossRef]
  2. I. Babuška and J. Osborn, Eigenvalue problems, in Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions Eds., Vol. II, North-Holland, Amsterdam (1991) 641–787.
  3. A. Bermúdez, R. Durán and R. Rodríguez, Finite element solution of incompressible fluid-structure vibration problems. Internat. J. Numer. Methods Eng. 40 (1997) 1435–1448. [CrossRef]
  4. A. Bermúdez, R. Durán and R. Rodríguez, Finite element analysis of compressible and incompressible fluid-solid systems, Math. Comp. 67 (1998) 111–136.
  5. A. Bermúdez and R. Rodríguez, Finite element analysis of sloshing and hydroelastic vibrations under gravity. ESAIM: M2AN 33 (1999) 305–327. [CrossRef] [EDP Sciences]
  6. A. Bermúdez, R. Rodríguez and D. Santamarina, A finite element solution of an added mass formulation for coupled fluid-solid vibrations. Numer. Math. 87 (2000) 201–227. [CrossRef] [MathSciNet]
  7. P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions Eds., Vol. II, North-Holland, Amsterdam (1991) 17–351.
  8. M. Costabel, Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal. 19 (1988) 613–621. [CrossRef] [MathSciNet]
  9. V.J. Ervin, N. Heuer and E.P. Stephan, On the h-p version of the boundary element method for Symm's integral equation on polygons. Comput. Methods Appl. Mech. Eng. 110 (1993) 25–38. [CrossRef]
  10. G.N. Gatica and G.C. Hsiao, Boundary-Field Equation Methods for a Class of Nonlinear Problems. Longman, Harlow, Pitman Res. Notes Math. Ser. 331 (1995).
  11. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston, MA, Monogr. Stud. Math. 24 (1985).
  12. M. Hamdi, Y. Ousset and G. Verchery, A displacement method for the analysis of vibrations of coupled fluid-structure systems. Internat. J. Numer. Methods Eng. 13 (1978) 139–150. [CrossRef]
  13. G.C. Hsiao, On the boundary-field equation methods for fluid-structure interactions, in Problems and Methods in Mathematical Physics (Chemnitz, 1993), L. Jentsch and F. Tröltzsch, Eds. Teubner, Stuttgart, Teubner-Texte Math. 134 (1994) 79–88.
  14. G.C. Hsiao and W.L. Wendland, A finite element method for some integral equations of the first kind. J. Math. Anal. Appl. 58 (1977) 449–481. [CrossRef] [MathSciNet]
  15. G.C. Hsiao, R.E. Kleinman and G.F. Roach, Weak solutions of fluid-solid interaction problems. Math. Nachr. 218 (2000) 139–163. [CrossRef] [MathSciNet]
  16. G.C. Hsiao, R.E. Kleinman and L.S. Schuetz, On variational formulations of boundary value problems for fluid-solid interactions. Elastic Wave Propagation (Galway, 1988). North-Holland, Amsterdam, North-Holland Ser. Appl. Math. Mech. 35 (1989) 321–326.
  17. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000).
  18. D. Mercier, Some systems of PDE on polygonal networks, in Partial Differential Equations on Multistructures (Luminy, 1999), F.A. Mehmeti, J. von Below and S. Nicaise Eds., Dekker, New York, Lect. Notes Pure Appl. Math. 219 (2001) 163–182.
  19. D. Mercier, Problèmes de transmission sur des réseaux polygonaux pour des systèmes d'EDP. Ann. Fac. Sci. Toulouse Math. 10 (2001) 107–162. [MathSciNet]
  20. H.J.-P. Morand and R. Ohayon, Fluid-Structure Interaction. J. Wiley & Sons, Chichester (1995).
  21. P. Ryan, Eigenvalue and eigenfunction error estimates for finite element formulations of linear hydroelasticity. Math. Comp. 70 (2001) 471–487. [CrossRef] [MathSciNet]
  22. M.E. Torrejón, Solución Numérica de Problemas de Vibraciones Hidroelásticas. Degree Thesis in Mathematical Engineering, Universidad de Concepción, Chile (2003).
  23. O.C. Zienkiewicz and R.L. Taylor, The Finite Element Method. Mc Graw Hill, London (1989).

Recommended for you