Free access
Volume 38, Number 4, July-August 2004
Page(s) 691 - 706
Published online 15 August 2004
  1. D.E. Carlson, Linear thermoelasticity, in Handbuch der physik, C. Truesdell Ed., VIa/2 (1972) 297–345.
  2. M.I.M. Copetti, A one-dimensional thermoelastic problem with unilateral constraint. Math. Comp. Simul. 59 (2002) 361–376. [CrossRef]
  3. M.I.M. Copetti and D.A. French, Numerical solution of a thermoviscoelastic contact problem by a penalty method. SIAM J. Numer. Anal. 41 (2003) 1487–1504. [CrossRef] [MathSciNet]
  4. W.A. Day, Heat conduction with linear thermoelasticity. Springer, New York (1985).
  5. C. Eck, Existence of solutions to a thermo-viscoelastic contact problem with Coulomb friction. Math. Mod. Meth. Appl. Sci. 12 (2002) 1491–1511. [CrossRef]
  6. C. Eck and J. Jarušek, The solvability of a coupled thermoviscoelastic contact problem with small Coulomb friction and linearized growth of frictional heat. Math. Meth. Appl. Sci. 22 (1999) 1221–1234. [CrossRef]
  7. C.M. Elliott and T. Qi, A dynamic contact problem in thermoelasticity. Nonlinear Anal. 23 (1994) 883–898. [CrossRef] [MathSciNet]
  8. S. Jiang and R. Racke, Evolution equations in thermoelasticity. Chapman & Hall/ CRC (2000).
  9. J.U. Kim, A one-dimensional dynamic contact problem in linear viscoelasticity. Math. Meth. Appl. Sci. 13 (1990) 55–79. [CrossRef]
  10. K.L. Kuttler and M. Shillor, A dynamic contact problem in one-dimensional thermoviscoelasticity. Nonlinear World 2 (1995) 355–385. [MathSciNet]
  11. M. Schatzman and M. Bercovier, Numerical approximation of a wave equation with unilateral constraints. Math. Comp. 53 (1989) 55–79. [CrossRef] [MathSciNet]

Recommended for you