Free access
Issue
ESAIM: M2AN
Volume 38, Number 4, July-August 2004
Page(s) 585 - 611
DOI http://dx.doi.org/10.1051/m2an:2004035
Published online 15 August 2004
  1. R.S. Anderson and N.F. Humphrey, Interaction of Weathering and Transport Processes in the Evolution of Arid Landscapes, in Quantitative Dynamics Stratigraphy, T.A. Cross Ed., Prentice Hall (1989) 349–361.
  2. C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels ; théorèmes d'approximation ; application à l'équation de transport. Ann. Sci. École Norm. Sup. 3 (1971) 185–233.
  3. A. Blouza, H. Le Dret, An up-to-the boundary version of Friedrichs' lemma and applications to the linear Koiter shell model. SIAM J. Math. Anal. 33 (2001) 877–895. [CrossRef] [MathSciNet]
  4. R. Eymard, T. Gallouët, V. Gervais and R. Masson, Convergence of a numerical scheme for stratigraphic modeling. SIAM J. Numer. Anal. submitted.
  5. R. Eymard, T. Gallouët, D. Granjeon, R. Masson and Q.H. Tran, Multi-lithology stratigraphic model under maximum erosion rate constraint. Int. J. Numer. Meth. Eng. 60 (2004) 527–548. [CrossRef] [MathSciNet]
  6. P.B. Flemings and T.E. Jordan, A synthetic stratigraphic model of foreland basin development. J. Geophys. Res. 94 (1989) 3851–3866. [CrossRef]
  7. E. Godlewski and P.A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer (1996).
  8. D. Granjeon, Modélisation Stratigraphique Déterministe: Conception et Applications d'un Modèle Diffusif 3D Multilithologique. Ph.D. Thesis, Géosciences Rennes, Rennes, France (1997).
  9. D. Granjeon and P. Joseph, Concepts and applications of a 3D multiple lithology, diffusive model in stratigraphic modeling, in J.W. Harbaugh et al. Eds., Numerical Experiments in Stratigraphy, SEPM Sp. Publ. 62 (1999).
  10. P.M. Kenyon and D.L. Turcotte, Morphology of a delta prograding by bulk sediment transport, Geological Society of America Bulletin 96 (1985) 1457–1465.
  11. O. Ladyzenskaja, V. Solonnikov and N. Ural'ceva, Linear and quasilinear equations of parabolic type. Transl. Math. Monogr. 23 (1968).
  12. J.C. Rivenaes, Application of a dual lithology, depth-dependent diffusion equation in stratigraphic simulation. Basin Research 4 (1992) 133–146. [CrossRef]
  13. J.C. Rivenaes, Impact of sediment transport efficiency on large-scale sequence architecture: results from stratigraphic computer simulation. Basin Research 9 (1997) 91–105. [CrossRef]
  14. D.M. Tetzlaff and J.W. Harbaugh, Simulating Clastic Sedimentation. Van Norstrand Reinhold, New York (1989).
  15. G.E. Tucker and R.L. Slingerland, Erosional dynamics, flexural isostasy, and long-lived escarpments: A numerical modeling study. J. Geophys. Res. 99 (1994) 229–243.

Recommended for you