Free access
Issue
ESAIM: M2AN
Volume 38, Number 5, September-October 2004
Page(s) 811 - 820
DOI http://dx.doi.org/10.1051/m2an:2004040
Published online 15 October 2004
  1. J.M. Ball, A version of the fundamental theorem for Young measures. Partial differential equations and continuum models of phase transitions. M Rascle, D. Serre, M. Slemrod Eds. Lect. Notes Phys. 344 (1989) 207–215. [CrossRef]
  2. J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 (1987) 13–52. [CrossRef] [MathSciNet]
  3. S. Bartels, Reliable and efficient approximation of polyconvex envelopes. SIAM J. Numer. Anal. (accepted) [Preprints of the DFG Priority Program “Multiscale Problems”, No. 76 (2002) (www.mathematik.uni-stuttgart.de/~mehrskalen/)].
  4. S. Bartels, Error estimates for adaptive Young measure approximation in scalar nonconvex variational problems. SIAM J. Numer. Anal. 42 (2004) 505–529. [CrossRef] [MathSciNet]
  5. S. Bartels and A. Prohl, Multiscale resolution in the computation of crystalline microstructure. Numer. Math. 96 (2004) 641–660. [CrossRef] [MathSciNet]
  6. C. Carstensen and P. Plecháč, Numerical solution of the scalar double-well problem allowing microstructure. Math. Comp. 66 (1997) 997–1026. [CrossRef] [MathSciNet]
  7. C. Carstensen and T. Roubíček, Numerical approximation of Young measures in non-convex variational problems. Numer. Math. 84 (2000) 395–414. [CrossRef] [MathSciNet]
  8. M. Chipot and S. Müller, Sharp energy estimates for finite element approximations of non-convex problems, in Variations of domain and free boundary problems, in solid mechanics, Solid Mech. Appl. 66 (1997) 317–327.
  9. B. Dacorogna, Direct methods in the calculus of variations. Appl. Math. Sci. 78 (1989).
  10. B. Dacorogna and J.-P. Haeberly, Some numerical methods for the study of the convexity notions arising in the calculus of variations. RAIRO Modél. Math. Anal. Numér. 32 (1998) 153–175. [MathSciNet]
  11. G. Dolzmann, Numerical computation of rank-one convex envelopes. SIAM J. Numer. Anal. 36 (1999) 1621–1635. [CrossRef] [MathSciNet]
  12. G. Dolzmann and N.J. Walkington, Estimates for numerical approximations of rank one convex envelopes. Numer. Math. 85 (2000) 647–663. [CrossRef] [MathSciNet]
  13. J.L. Ericksen, Constitutive theory for some constrained elastic crystals. Int. J. Solids Struct. 22 (1986) 951–964. [CrossRef]
  14. K. Hackl and U. Hoppe, On the calculation of microstructures for inelastic materials using relaxed energies. IUTAM symposium on computational mechanics of solid materials at large strains, C. Miehe Ed., Solid Mech. Appl. 108 (2003) 77–86.
  15. R.V. Kohn, The relaxation of a double-well energy. Contin. Mech. Thermodyn. 3 (1991) 193–236. [CrossRef] [MathSciNet]
  16. R.V. Kohn and G. Strang, Optimal design and relaxation of variational problems. I.-III. Commun. Pure Appl. Math. 39 (1986) 353–377. [CrossRef] [MathSciNet]
  17. M. Kružik, Numerical approach to double well problems. SIAM J. Numer. Anal. 35 (1998) 1833–1849. [CrossRef] [MathSciNet]
  18. M. Luskin, On the computation of crystalline microstructure. Acta Numerica 5 (1996) 191–257. [CrossRef]
  19. C. Miehe and M. Lambrecht, Analysis of micro-structure development in shearbands by energy relaxation of incremental stress potentials: large-strain theory for standard dissipative materials. Internat. J. Numer. Methods Engrg. 58 (2003) 1–41. [CrossRef] [MathSciNet]
  20. S. Müller, Variational models for microstructure and phase transitions. Lect. Notes Math. 1713 (1999) 85–210. [CrossRef]
  21. R.A. Nicolaides, N. Walkington and H. Wang, Numerical methods for a nonconvex optimization problem modeling martensitic microstructure. SIAM J. Sci. Comput. 18 (1997) 1122–1141. [CrossRef] [MathSciNet]
  22. T. Roubíček, Relaxation in optimization theory and variational calculus. De Gruyter Series in Nonlinear Analysis Appl. 4 New York (1997).

Recommended for you