Free access
Issue
ESAIM: M2AN
Volume 38, Number 5, September-October 2004
Page(s) 781 - 810
DOI http://dx.doi.org/10.1051/m2an:2004039
Published online 15 October 2004
  1. N. Abdellatif, Méthodes spectrales et d'éléments spectraux pour les équations de Navier–Stokes axisymétriques. Thesis, Université Pierre et Marie Curie, Paris (1997).
  2. N. Abdellatif, A mixed stream function and vorticity formulation for axisymmetric Navier–Stokes equations. J. Comp. Appl. Math. 117 (2000) 61–83. [CrossRef]
  3. M. Amara, H. Barucq and M. Duloué, Une formulation mixte convergente pour le système de Stokes tridimensionnel. C. R. Acad. Sci. Paris Série I 328 (1999) 935–938.
  4. M. Amara, H. Barucq and M. Duloué, Une formulation mixte convergente pour les équations de Stokes tridimensionnelles. Actes des VIes Journées Zaragoza-Pau de Mathématiques Appliquées et de Statistiques, Publ. Univ. Pau, Pau (2001) 61–68.
  5. C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional nonsmooth domains. Math. Meth. Appl. Sci. 21 (1998) 823–864. [CrossRef] [MathSciNet]
  6. F. Ben Belgacem and C. Bernardi, Spectral element discretization of the Maxwell equations. Math. Comput. 68 (1999) 1497–1520. [CrossRef]
  7. C. Bernardi and Y. Maday, Approximations spectrales de problèmes aux limites elliptiques. Springer-Verlag. Math. Appl. 10 (1992).
  8. C. Bernardi, V. Girault and Y. Maday, Mixed spectral element approximation of the Navier-Stokes equations in the stream-function and vorticity formulation. IMA J. Numer. Anal. 12 (1992) 565–608. [CrossRef] [MathSciNet]
  9. C. Bernardi, M. Dauge and Y. Maday, Interpolation of nullspaces for polynomial approximation of divergence-free functions in a cube, in Proc. Conf. Boundary Value Problems and Integral Equations in Non smooth Domains, M. Costabel, M. Dauge and S. Nicaise Eds., Dekker. Lect. Notes Pure Appl. Math. 167 (1994) 27–46.
  10. C. Bernardi, M. Dauge, Y. Maday and M. Azaïez, Spectral Methods for Axisymmetric Domains. Gauthier-Villars & North-Holland. Ser. Appl. Math. 3 (1999).
  11. C. Canuto and A. Quarteroni, Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38 (1982) 67–86. [CrossRef]
  12. M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains. Arch. Ration. Mech. Anal. 151 (2000) 221–276. [CrossRef] [MathSciNet]
  13. M. Duloué, Analyse numérique des problèmes d'écoulement de fluides. Thesis, Université de Pau et des Pays de l'Adour, Pau (2001).
  14. V. Girault and P.-A. Raviart, An analysis of a mixed finite element method for the Navier-Stokes equations. Numer. Math. 33 (1979) 235–271. [CrossRef] [MathSciNet]
  15. V. Girault and P.-A. Raviart, Finite Element Methods for the Navier–Stokes Equations, Theory and Algorithms. Springer-Verlag (1986).
  16. R. Glowinski and O. Pironneau, Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem. SIAM Review 21 (1979) 167–212. [CrossRef] [MathSciNet]

Recommended for you