Free access
Issue
ESAIM: M2AN
Volume 38, Number 6, November-December 2004
Page(s) 989 - 1009
DOI http://dx.doi.org/10.1051/m2an:2004047
Published online 15 December 2004
  1. F. Bouchut, Construction of BGK models with a family of kinetic entropies for a given system of conservation laws. J. Statist. Phys. 95 (1999) 113–170. [CrossRef] [MathSciNet]
  2. Y. Brenier, Average multivalued solutions for scalar conservation laws. SIAM J. Numer. Anal. 21 (1984) 1013–1037. [CrossRef] [MathSciNet]
  3. D.S. Butler, The numerical solution of hyperbolic systems of partial differential equations in three independent variables, in Proc. Roy. Soc. 255A (1960) 232–252.
  4. C. Cercignani, The Boltzmann equation and its applications. Springer-Verlag, New York (1988).
  5. R. Courant and D. Hilbert, Methods of Mathematical Physics II. Interscience Publishers, New York (1962).
  6. S.M. Deshpande, A second-order accurate kinetic-theory-based method for inviscid compressible flows. NASA Technical Paper 2613 (1986).
  7. H. Deconinck, P.L. Roe and R. Struijs, A multidimensional generalization of Roe's flux difference splitter for the Euler equations. Comput. Fluids 22 (1993) 215–222. [CrossRef] [MathSciNet]
  8. M. Fey, Ein echt mehrdimensionales Verfahren zur Lösung der Eulergleichungen. Dissertation, ETH Zürich, Switzerland (1993).
  9. M. Fey, Multidimensional upwinding. I. The method of transport for solving the Euler equations. J. Comput. Phys. 143 (1998) 159–180. [CrossRef] [MathSciNet]
  10. M. Fey, Multidimensional upwinding. II. Decomposition of the Euler equations into advection equations. J. Comput. Phys. 143 (1998) 181–199. [CrossRef] [MathSciNet]
  11. M. Fey, S. Noelle and C.v. Törne, The MoT-ICE: a new multi-dimensional wave-propagation-algorithm based on Fey's method of transport. With application to the Euler- and MHD-equations. Int. Ser. Numer. Math. 140, 141 (2001) 373–380.
  12. E. Godlewski and P.A. Raviart, Numerical approximation of hyperbolic systems of conservation laws. Springer-Verlag, New York (1996).
  13. A. Jeffrey and T. Taniuti, Non-linear wave propagation. Academic Press, New York (1964).
  14. M. Junk, A kinetic approach to hyperbolic systems and the role of higher order entropies. Int. Ser. Numer. Math. 140, 141 (2001) 583–592.
  15. M. Junk and J. Struckmeier, Consistency analysis of mesh-free methods for conservation laws, Mitt. Ges. Angew. Math. Mech. 24, No. 2, 99 (2001).
  16. T. Kröger, Multidimensional systems of hyperbolic conservation laws, numerical schemes, and characteristic theory. Dissertation, RWTH Aachen, Germany (2004).
  17. T. Kröger and S. Noelle, Numerical comparison of the method of transport to a standard scheme. Comp. Fluids (2004) (doi: 10.1016/j.compfluid.2003.12.002) (in print).
  18. D. Kröner, Numerical schemes for conservation laws. Wiley Teubner, Stuttgart (1997).
  19. R.J. LeVeque, Numerical methods for conservation laws. Birkhäuser, Basel (1990).
  20. P. Lin, K.W. Morton and E. Süli, Characteristic Galerkin schemes for scalar conservation laws in two and three space dimensions. SIAM J. Numer. Anal. 34 (1997) 779–796. [CrossRef] [MathSciNet]
  21. M. Lukáčová-Medviďová, K.W. Morton and G. Warnecke, Evolution Galerkin methods for hyperbolic systems in two space dimensions. Math. Comp. 69 (2000) 1355–1384. [CrossRef] [MathSciNet]
  22. M. Lukáčová-Medviďová, K.W. Morton and G. Warnecke, Finite volume evolution Galerkin (FVEG) methods hyperbolic systems. SIAM J. Sci. Comp. 26 (2004) 1–30. [CrossRef]
  23. M. Lukáčová-Medviďová, J. Saibertová and G. Warnecke, Finite volume evolution Galerkin methods for nonlinear hyperbolic systems. J. Comp. Phys. 183 (2002) 533–562. [CrossRef]
  24. S. Noelle, The MoT-ICE: a new high-resolution wave-propagation algorithm for multidimensional systems of conservation laws based on Fey's Method of Transport. J. Comput. Phys. 164 (2000) 283–334. [CrossRef] [MathSciNet]
  25. S. Ostkamp, Multidimensional Characteristic Galerkin Schemes and Evolution Operators for Hyperbolic Systems. Dissertation, Hannover University, Germany (1995).
  26. S. Ostkamp, Multidimensional characteristic Galerkin methods for hyperbolic systems. Math. Meth. Appl. Sci. 20 (1997) 1111–1125. [CrossRef]
  27. B. Perthame, Boltzmann type schemes for gas dynamics and the entropy property. SIAM J. Numer. Anal. 27 (1990) 1405–1421. [CrossRef] [MathSciNet]
  28. B. Perthame, Second-order Boltzmann schemes for compressible Euler equations in one and two space dimensions. SIAM J. Numer. Anal. 29 (1992) 1–19. [CrossRef] [MathSciNet]
  29. P. Prasad, Nonlinear hyperbolic waves in multi-dimensions. Chapman & Hall/CRC, New York (2001).
  30. J. Quirk, A contribution to the great Riemann solver debate. Int. J. Numer. Meth. Fluids 18 (1994) 555–574. [NASA ADS] [CrossRef]
  31. P. Roe, Discrete models for the numerical analysis of time-dependent multidimensional gas dynamics. J. Comput. Phys. 63 (1986) 458–476. [NASA ADS] [CrossRef] [MathSciNet]
  32. J.L. Steger and R.F. Warming, Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods. J. Comput. Phys. 40 (1981) 263–293. [CrossRef] [MathSciNet]
  33. C.v. Törne, MOTICE – Adaptive, Parallel Numerical Solution of Hyperbolic Conservation Laws. Dissertation, Bonn University, Germany. Bonner Mathematische Schriften, No. 334 (2000).
  34. E. Toro, Riemann solvers and numerical methods for fluid dynamics. Second edition, Springer, Berlin (1999).
  35. K. Xu, Gas-kinetic schemes for unsteady compressible flow simulations. Lect. Ser. Comp. Fluid Dynamics, VKI report 1998-03 (1998).
  36. S. Zimmermann, The method of transport for the Euler equations written as a kinetic scheme. Int. Ser. Numer. Math. 141 (2001) 999–1008.
  37. S. Zimmermann, Properties of the Method of Transport for the Euler Equations. Dissertation, ETH Zürich, Switzerland (2001).

Recommended for you