Free access
Issue
ESAIM: M2AN
Volume 38, Number 6, November-December 2004
Page(s) 903 - 929
DOI http://dx.doi.org/10.1051/m2an:2004044
Published online 15 December 2004
  1. B. Achchab, S. Achchab and A. Agouzal, Hierarchical robust a posteriori error estimator for a singularly pertubed problem. C.R Acad. Paris I 336 (2003) 95–100.
  2. B. Achchab, A. Agouzal, J. Baranger and J.F. Maitre, Estimateur d'erreur a posteriori hiérarchique. Application aux éléments finis mixtes. Numer. Math. 80 (1998) 159–179. [CrossRef] [MathSciNet]
  3. Y. Achdou and C. Bernardi, Un schéma de volumes ou éléments finis adaptatif pour les équations de Darcy à perméabilité variable. C.R Acad. Paris I 333 (2001) 693–698.
  4. Y. Achdou, C. Bernardi and F. Coquel, A priori and a posteriori analysis of finite volume discretizations of Darcy's equations. Numer. Math. 96 (2003) 17–42. [CrossRef] [MathSciNet]
  5. M. Ainsworth and J.T. Oden, A posteriori error estimation in finite element analysis. Wiley-Interscience Publication (2000).
  6. L. Angermann, A posteriori error estimates for FEM with violated Galerkin orthogonality. Numer. Methods Partial Differential Equations 18 (2002) 241–259. [CrossRef] [MathSciNet]
  7. D.N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19 (1985) 7–32. [MathSciNet]
  8. R. Bank and K. Smith, A posteriori estimates based on hierarchical bases. SIAM J. Numer. Anal. 30 (1991) 921–935. [CrossRef]
  9. R.E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations. Math. Comp. 44 (1985) 283–301. [CrossRef] [MathSciNet]
  10. R. Becker, P. Hansbo and M.G. Larson, Energy norm a posteriori error estimation for discontinuous Galerkin methods. Comput. Methods Appl. Mech. Engrg. 192 (2003) 723–733. [CrossRef] [MathSciNet]
  11. C. Bernardi, private communication.
  12. C. Bernardi and R. Verfürth, Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85 (2000) 579–608. [CrossRef] [MathSciNet]
  13. D. Braess, Finite elements. Cambridge Univ. Press (1997).
  14. C. Carstensen, A posteriori error estimate for the mixed finite element method. Math. Comp. 66 (1997) 465–476. [CrossRef] [MathSciNet]
  15. C. Carstensen and A. Funken, A posteriori error control in low-order finite element discretizations of incompressible stationary flow problems. Math. Comp. 70 (2000) 1353–1381. [CrossRef]
  16. B. Courbet and J.-P. Croisille, Finite volume box schemes on triangular meshes. RAIRO Modél. Math. Anal. Numér. 32 (1998) 631–649. [MathSciNet]
  17. J.-P. Croisille, Finite volume box schemes and mixed methods. ESAIM: M2AN 31 (2000) 1087–1106. [CrossRef] [EDP Sciences]
  18. J.-P. Croisille and I. Greff, Some nonconforming mixed box schemes for elliptic problems. Numer. Methods Partial Differential Equations 8 (2002) 355–373. [CrossRef] [MathSciNet]
  19. M. Crouzeix and P.-A. Raviart, Conforming and nonconforming mixed finite element methods for solving the stationary Stokes equations I. RAIRO Anal. Numér. 3 (1973) 33–75.
  20. E. Dari, R. Durán and C. Parda, Error estimators for nonconforming finite element approximations of the Stokes problem. Math. Comp. 64 (1995) 1017–1033. [CrossRef] [MathSciNet]
  21. E. Dari, R. Durán, C. Parda and V. Vampa, A posteriori error estimators for nonconforming finite element methods. RAIRO Modél Math. Anal. Numér. 30 (1996) 385–400. [CrossRef] [MathSciNet]
  22. A. Ern and J.-L. Guermond, Theory and practice of finite elements, Appl. Math. Ser., Springer, New York 159 (2004).
  23. M. Fortin and M. Soulié, A non-conforming piecewise quadratic finite element on triangles. Int. J. Num. Meth. Engrg. 19 (1983) 505–520. [CrossRef] [MathSciNet]
  24. R.H.W. Hoppe and B. Wohlmuth, Element-oriented and edge-oriented local error estimators for non-conforming finite element methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 237–263. [MathSciNet]
  25. V. John, A posteriori L2-error estimates for the nonconforming P1/P0-finite element discretization of the Stokes equations. J. Comput. Appl. Math. 96 (1998) 99–116. [CrossRef] [MathSciNet]
  26. G. Kanschat and F.-T. Suttmeier, A posteriori error estimates for non-conforming finite element schemes. Calcolo 36 (1999) 129–141. [CrossRef] [MathSciNet]
  27. O. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 2374–2399. [CrossRef] [MathSciNet]
  28. P.-A. Raviart and J.-M. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of the Finite Element Method, E. Magenes and I. Galligani Eds., Springer-Verlag, New York, Lect. Notes Math. 606 (1977).
  29. F. Schieweck, A posteriori error estimates with post-processing for nonconforming finite elements. ESAIM: M2AN 36 (2002) 489–503. [CrossRef] [EDP Sciences]
  30. J.-M. Thomas and D. Trujillo, Mixed finite volume methods. Int. J. Num. Meth. Engrg. 46 (1999) 1351–1366. [CrossRef]
  31. R. Verfürth, A posteriori error estimators for the Stokes equations. II. Non-conforming discretizations. Numer. Math. 60 (1991) 235–249. [CrossRef] [MathSciNet]
  32. R. Verfürth, A review of a posteriori error estimation and adaptative mesh-refinement techniques. Chichester, England (1996).
  33. B.I. Wohlmuth and R.H.W. Hoppe, A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas. Math. Comp. 68 (1999) 1347–1378. [CrossRef] [MathSciNet]

Recommended for you