Free access
Issue
ESAIM: M2AN
Volume 38, Number 6, November-December 2004
Page(s) 931 - 959
DOI http://dx.doi.org/10.1051/m2an:2004045
Published online 15 December 2004
  1. P. Angot, C.-H. Bruneau and P. Fabrie, A penalization method to take into account obstacles in incompressible viscous flows. Numer. Math. 81 (1999) 497–520. [CrossRef] [MathSciNet]
  2. B. Andreianov, F. Boyer and F. Hubert, Finite volume schemes for the p-Laplacian. Further error estimates. Preprint No. 03-29, LATP Université de Provence (2003).
  3. B. Andreianov, M. Gutnic and P. Wittbold, Convergence of finite volume approximations for a nonlinear elliptic-parabolic problem: A “continuous” approach. SIAM J. Numer. Anal. 42 (2004) 228–251. [CrossRef] [MathSciNet]
  4. J.W. Barrett and W.B. Liu, A remark on the regularity of the solutions of the p-Laplacian and its application to the finite element approximation, J. Math. Anal. Appl. 178 (1993) 470–487.
  5. J.W. Barrett and W.B. Liu, Finite element approximation of the p-Laplacian. Math. Comp. 61 (1993) 523–537. [MathSciNet]
  6. S. Chow, Finite element error estimates for non-linear elliptic equations of monotone type. Numer. Math. 54 (1989) 373–393. [CrossRef] [MathSciNet]
  7. Y. Coudière, J.-P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem. ESAIM: M2AN 33 (1999) 493–516. [CrossRef] [EDP Sciences] [MathSciNet]
  8. J.I. Diaz and F. de Thelin, On a nonlinear parabolic problem arising in some models related to turbulent flows. SIAM J. Math. Anal. 25 (1994) 1085–1111. [CrossRef] [MathSciNet]
  9. K. Domelevo and P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. (2004) (submitted).
  10. R. Eymard, T. Gallouët and R. Herbin, Finite Volume Methods, Handbook Numer. Anal., P.G. Ciarlet and J.L. Lions Eds., North-Holland VII (2000).
  11. R. Eymard, T. Gallouët and R. Herbin, Finite volume approximation of elliptic problems and convergence of an approximate gradient. Appl. Numer. Math. 37 (2001) 31–53. [CrossRef] [MathSciNet]
  12. R. Eymard, T. Gallouët and R. Herbin, A finite volume scheme for anisotropic diffusion problems. C.R. Acad. Sci. Paris 1 339 (2004) 299–302.
  13. R. Glowinski and A. Marrocco, Sur l'approximation par éléments finis d'ordre un, et la résolution, par pénalisation-dualité, d'une classe de problèmes de Dirichlet non linéaires. RAIRO Sér. Rouge Anal. Numér. 9 no R-2 (1975).
  14. R. Glowinski and J. Rappaz, Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology. ESAIM: M2AN 37 (2003) 175–186. [CrossRef] [EDP Sciences]
  15. M. Picasso, J. Rappaz, A. Reist, M. Funk and H. Blatter, Numerical simulation of the motion of a two dimensional glacier. Int. J. Numer. Methods Eng. 60 (2004) 995–1009. [CrossRef]
  16. J. Simon, Régularité de la solution d'un problème aux limites non linéaires. Ann. Fac. Sciences Toulouse 3 (1981) 247–274.

Recommended for you