Free access
Volume 39, Number 2, March-April 2005
Page(s) 253 - 273
Published online 15 April 2005
  1. R. Abgrall, How to prevent pressure oscillations in multicomponent flow calculations. J. Comput. Phys. 125 (1996) 150–160. [CrossRef] [MathSciNet]
  2. F. Barre et al., The CATHARE code strategy and assessment. Nucl. Eng. Des. 124 (1990) 257–284. [CrossRef]
  3. K.H. Bendiksen, D. Malnes, R. Moe and S. Nuland, The dynamic two-fluid model OLGA: Theory and application, in SPE Prod. Eng. 6 (1991) 171–180.
  4. F. Coquel, K. El Amine, E. Godlewski, B. Perthame and P. Rascle, A numerical method using upwind schemes for the resolution of two-phase flows. J. Comput. Phys. 136 (1997) 272–288. [CrossRef] [MathSciNet]
  5. J. Cortes, A. Debussche and I. Toumi, A density perturbation method to study the eigenstructure of two-phase flow equation systems. J. Comput. Phys. 147 (1998) 463–484. [CrossRef] [MathSciNet]
  6. S. Evje and K.K. Fjelde, Hybrid flux-splitting schemes for a two-phase flow model. J. Comput. Phys. 175 (2002) 674–701. [CrossRef]
  7. S. Evje and K.K. Fjelde, On a rough ausm scheme for a one-dimensional two-phase flow model. Comput. Fluids 32 (2003) 1497–1530. [CrossRef] [MathSciNet]
  8. S. Evje and T. Flåtten, Hybrid flux-splitting schemes for a common two-fluid model. J. Comput. Phys. 192 (2003) 175–210. [CrossRef]
  9. S. Evje and T. Flåtten, Weakly implicit numerical schemes for a two-fluid model. SIAM J. Sci. Comput., accepted.
  10. T. Flåtten, Hybrid flux-splitting schemes for numerical resolution of two-phase flows., Norwegian University of Science and Technology (2003) 114.
  11. M. Larsen, E. Hustvedt, P. Hedne and T. Straume, PeTra: A novel computer code for simulation of slug flow, in SPE Annual Technical Conference and Exhibition, SPE 38841 (October 1997) 1–12.
  12. M.-S. Liou, A sequel to AUSM: AUSM(+). J. Comput. Phys. 129 (1996) 364–382. [NASA ADS] [CrossRef] [MathSciNet]
  13. Y.Y. Niu, Simple conservative flux splitting for multi-component flow calculations. Num. Heat Trans. 38 (2000) 203–222. [CrossRef]
  14. Y.Y. Niu, Advection upwinding splitting method to solve a compressible two-fluid model. Internat. J. Numer. Methods Fluids 36 (2001) 351–371. [CrossRef]
  15. H. Paillère, C. Corre and J.R.G. Cascales, On the extension of the AUSM+ scheme to compressible two-fluid models. Comput. Fluids 32 (2003) 891–916. [CrossRef] [MathSciNet]
  16. V.H. Ransom, Numerical bencmark tests. Multiphase Sci. Tech. 3 (1987) 465-473.
  17. V.H. Ransom et al., RELAP5/MOD3 Code Manual, NUREG/CR-5535, Idaho National Engineering Laboratory (1995).
  18. R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150 (1999) 425–467. [CrossRef] [MathSciNet]
  19. E. Tadmor, Numerical viscosity and the entropy condition for conservative difference schemes. Math. Comp. 168 (1984) 369–381. [CrossRef]
  20. I. Tiselj and S. Petelin, Modelling of two-phase flow with second-order accurate scheme. J. Comput. Phys. 136 (1997) 503–521. [CrossRef]
  21. I. Toumi, An upwind numerical method for two-fluid two-phase flow models. Nuc. Sci. Eng. 123 (1996) 147–168.
  22. I. Toumi and A. Kumbaro, An approximate linearized riemann solver for a two-fluid model. J. Comput. Phys. 124 (1996) 286–300. [CrossRef] [MathSciNet]
  23. J.A. Trapp and R.A. Riemke, A nearly-implicit hydrodynamic numerical scheme for two-phase flows. J. Comput. Phys. 66 (1986) 62–82. [CrossRef] [MathSciNet]
  24. Y. Wada and M.-S. Liou, An accurate and robust flux splitting scheme for shock and contact discontinuities. SIAM J. Sci. Comput. 18 (1997) 633–657. [CrossRef] [MathSciNet]

Recommended for you