Free access
Volume 39, Number 2, March-April 2005
Page(s) 319 - 348
Published online 15 April 2005
  1. Y. Achdou, C. Bernardi and F. Coquel, A priori and a posteriori error analysis of finite volume discretizations of Darcy's equations. Numer. Math. 96 (2003) 17–42. [CrossRef] [MathSciNet]
  2. G. Acosta and R.G. Durán, The maximum angle condition for mixed and non-conforming elements, Application to the Stokes equations. SIAM J. Numer. Anal. 37 (1999) 18–36. [CrossRef] [MathSciNet]
  3. T. Apel, Anisotropic finite elements: Local estimates and applications. Adv. Numer. Math. Teubner, Stuttgart (1999).
  4. T. Apel and S. Nicaise, The inf-sup condition for some low order elements on anisotropic meshes. Calcolo 41 (2004) 89–113. [CrossRef] [MathSciNet]
  5. T. Apel, S. Nicaise and J. Schröberl, A non-conforming finite element method with anisotropic mesh grading for the stokes problem in domains with edges. IMA J. Numer. Anal. 21 (2001) 843–856. [CrossRef] [MathSciNet]
  6. A. Bergam, C. Bernardi and Z. Mghazli, A posteriori analysis of the finite element discretization of some parabolic problem. Preprint Laboratoire J.-L. Lions 01045, Université Paris 6 (2001).
  7. A. Bergam, C. Bernardi and Z. Mghazli, A posteriori analysis of the finite element discretization of a nonlinear parabolic equation. (2004) (to appear).
  8. C. Bernardi and B. Métivet, Indicateurs d'erreur pour l'équation de la chaleur. Rev. Européenne Élém. Finis 9 (2000) 425–438.
  9. C. Bernardi and R. Verfürth, A posteriori error analysis of the fully discretized time-dependent Stokes equations. ESAIM: M2AN 38 (2004) 437–455. [CrossRef] [EDP Sciences]
  10. P. Brenner, M. Crouzeix and V. Thomée, Single step methods for inhomogeneous linear differential equations in banach space. RAIRO Anal. Numér. 16 (1982) 5–26. [MathSciNet]
  11. P. Ciarlet, The finite element method for elliptic problems. North Holland (1996).
  12. P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 2 (1975) 77–84.
  13. E. Creusé, G. Kunert and S. Nicaise, A posteriori error estimation for the Stokes problem: Anisotropic and isotropic discretizations. Math. Models Methods Appl. Sci. 14 (2004) 1297–1341. [CrossRef] [MathSciNet]
  14. E. Dari, R. Durán, C. Padra and V. Vampa, A posteriori error estimators for nonconforming finite element methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 385–400. [CrossRef] [MathSciNet]
  15. V. Girault and P.-A. Raviart, Finite elements methods for Navier-Stokes equations, Theory and Algorithms. Springer Series in Computational Mathematics, Berlin (1986).
  16. C. Johnson, Y.-Y. Nie and V. Thomée, An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem. SIAM J. Numer. Anal. 27 (1990) 277–291. [CrossRef] [MathSciNet]
  17. M. Picasso, Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Engrg. 167 (1998) 223–237. [CrossRef] [MathSciNet]
  18. M. Picasso, An anisotropic error indicator based on Zienkiewicz-Zhu error estimator: Application to elliptic and parabolic problems. SIAM J. Sci. Comput. 24 (2003) 1328–1355. [CrossRef] [MathSciNet]
  19. L.R. Scott and S. Zhang, Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483–493. [CrossRef] [MathSciNet]
  20. R. Verfürth, A review of a posteriori error estimation and adaptive mesh–refinement techniques. Wiley-Teubner, Chichester, Stuttgart (1996).
  21. R. Verfürth, Error estimates for some quasi-interpolation operators. ESAIM: M2AN 33 (1999) 695–713. [CrossRef] [EDP Sciences]
  22. R. Verfürth, A posteriori error estimates for finite element discretization of the heat equation. Calcolo 40 (2003) 195–212. [CrossRef] [MathSciNet]

Recommended for you