Free access
Issue
ESAIM: M2AN
Volume 39, Number 2, March-April 2005
Page(s) 377 - 418
DOI http://dx.doi.org/10.1051/m2an:2005012
Published online 15 April 2005
  1. M. Asch and G. Lebeau, Geometrical aspects of exact boundary controllability for the wave equation: a numerical study. COCV 3 (1998) 163–212. [CrossRef] [EDP Sciences]
  2. H.T. Banks, K. Ito and Y. Wang, Exponentially stable approximations of weakly damped wave equations. Ser. Num. Math., Birkhäuser 100 (1990) 1–33.
  3. F. Bourquin, Numerical methods for the control of flexible structures. J. Struct. Control 8 (2001).
  4. C. Castro and S. Micu, Boundary controllability of a semi-discrete linear 1-D wave equation with mixed finite elements. SIAM J. Numer. Anal., submitted.
  5. C. Castro, S. Micu and A. Münch, Boundary controllability of a semi-discrete linear 2-D wave equation with mixed finite elements, submitted.
  6. I. Charpentier and Y. Maday, Identification numérique de contrôles distribués pour l'équation des ondes. C.R. Acad. Sci. Paris Sér. I 322 (1996) 779–784.
  7. G.C. Cohen, Higher-order Numerical Methods for Transient Wave Equations. Scientific Computation, Springer (2002).
  8. R. Glowinski, Ensuring well-posedness by analogy: Stokes problem and boundary control for the wave equation. J. Comput. Phys. 103 (1992) 189–221. [CrossRef] [MathSciNet]
  9. R. Glowinski, C.H. Li and J.-L. Lions, A numerical approach to the exact boundary controllability of the wave equation (I). Dirichlet Controls: Description of the numerical methods. Japan J. Appl. Math. 7 (1990) 1–76. [CrossRef] [MathSciNet]
  10. R. Glowinski, W. Kinton and M.F. Wheeler, A mixed finite element formulation for the boundary controllability of the wave equation. Int. J. Numer. Methods Engrg. 27 (1989) 623–636. [CrossRef] [MathSciNet]
  11. G.H. Golub and C. Van Loan, Matrix Computations. Johns Hopkins Press, Baltimore (1989).
  12. J.A. Infante and E. Zuazua, Boundary observability for the space-discretizations of the 1-D wave equation. ESAIM: M2AN 33 (1999) 407–438. [CrossRef] [EDP Sciences] [MathSciNet]
  13. A.E. Ingham, Some trigonometrical inequalities with applications to the theory of series. Math. Z. 41 (1936) 367–369. [CrossRef] [MathSciNet]
  14. V. Komornik, Exact controllability and Stabilization - The multiplier method. J. Wiley and Masson (1994).
  15. S. Krenk, Dispersion-corrected explicit integration of the wave equation. Comp. Methods Appl. Mech. Engrg. 191 (2001) 975–987. [CrossRef] [MathSciNet]
  16. J.L. Lions, Contrôlabilité exacte – Pertubations et stabilisation de systèmes distribués, Tome 1, Masson, Paris (1988).
  17. S. Micu, Uniform boundary controllability of a semi-discrete 1-D wave equation. Numer. Math. 91 (2002) 723–728. [CrossRef] [MathSciNet]
  18. A. Münch, Family of implicit schemes uniformly controllable for the 1-D wave equation. C.R. Acad. Sci. Paris Sér. I 339 (2004) 733–738.
  19. A. Münch and A.F. Pazoto, Uniform stabilization of a numerical approximation of a locally damped wave equation. ESAIM: COCV, submitted.
  20. M. Negreanu and E. Zuazua, Uniform boundary controllability of a discrete 1-D wave equation. Systems Control Lett. 48 (2003) 261–280. [CrossRef] [MathSciNet]
  21. M. Negreanu and E. Zuazua, Discrete Ingham inequalities and applications. C.R. Acad. Sci. Paris Sér. I 338 (2004) 281–286.
  22. M. Negreanu and E. Zuazua, Convergence of a multi-grid method for the controlabillity of the 1-D wave equation. C.R. Acad. Sci. Paris, Sér. I 338 (2004) 413–418.
  23. P.A. Raviart and J.M. Thomas, Introduction à l'analyse numérique des équations aux dérivées partielles. Masson, Paris (1983).
  24. D.L. Russell, Controllability and stabilization theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20 (1978) 639–737. [CrossRef] [MathSciNet]
  25. J.M. Urquiza, Contrôle d'équations des ondes linéaires et quasilinéaires. Ph.D. Thesis Université de Paris VI (2000).
  26. E. Zuazua, Boundary observability for finite-difference space semi-discretizations of the 2-D wave equation in the square. J. Math. Pures. Appl. 78 (1999) 523–563. [CrossRef] [MathSciNet]

Recommended for you