Free access
Issue
ESAIM: M2AN
Volume 39, Number 3, May-June 2005
Special issue on Low Mach Number Flows Conference
Page(s) 477 - 486
DOI http://dx.doi.org/10.1051/m2an:2005026
Published online 15 June 2005
  1. T. Alazard, Incompressible limit of the non-isentropic Euler equations with solid wall boundary conditions. Submitted (2004).
  2. D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Comm. Math. Phys. 238 (2003) 211–223. [MathSciNet]
  3. D. Bresch, B. Desjardins and D. Gérard-Varet, Rotating fluids in a cylinder. Discrete Contin. Dynam. Systems Ser. A 11 (2004) 47–82. [CrossRef]
  4. D. Bresch, B. Desjardins and C.-K. Lin, On some compressible fluid models: Korteweg, lubrication and shallow water systems. Comm. Partial Differential Equations 28 (2003) 1009–1037.
  5. D. Bresch, B. Desjardins, E. Grenier and C.-K. Lin, Low Mach number limit of viscous polytropic flows: formal asymptotics in the periodic case. Stud. Appl. Math. 109 (2002) 125–148. [CrossRef] [MathSciNet]
  6. R. Danchin, Fluides légèrement compressibles et limite incompressible. Séminaire École Polytechnique (France), Exposé No. III (2000).
  7. B. Desjardins, E. Grenier, P.–L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. 78 (1999) 461–471. [CrossRef] [MathSciNet]
  8. I. Gallagher, Résultats récents sur la limite incompressible. Séminaire Bourbaki (France), No. 926 (2003).
  9. J.F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar Shallow water; Numerical results. Discrete Contin. Dynam. Systems Ser. B 1 (2001) 89–102. [CrossRef] [MathSciNet]
  10. E. Grenier, Oscillatory perturbations of the Navier-Stokes equations. J. Math. Pures Appl. 76 (1997) 477–498. [CrossRef] [MathSciNet]
  11. C.D. Levermore and M. Sammartino, A shallow water model with eddy viscosity for basins with varying bottom topography. Nonlinearity 14 (2001) 1493–1515. [CrossRef] [MathSciNet]
  12. C.D. Levermore, M. Oliver and E.S. Titi, Global well-posedness for a models of shallow water in a basin with a varying bottom. Indiana Univ. Math. J. 45 (1996) 479–510. [MathSciNet]
  13. P.-L. Lions, Mathematical topics in fluid dynamics, Vol. 2, Compressible models. Oxford Science Publication, Oxford (1998).
  14. P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluids. J. Math. Pures Appl. 77 (1998) 585–627. [CrossRef] [MathSciNet]
  15. G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations. Arch. Rational Mech. Anal. 158 (2001) 61–90. [CrossRef]
  16. G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations, in Séminaire Équations aux Dérivées Partielles, École Polytechnique (2001).
  17. M. Oliver, Justification of the shallow water limit for a rigid lid with bottom topography. Theor. Comp. Fluid Dyn. 9 (1997) 311–324. [CrossRef]
  18. J. Pedlosky, Geophysical fluid dynamics. Berlin Heidelberg-New York, Springer-Verlag (1987).

Recommended for you