Free access
Issue
ESAIM: M2AN
Volume 39, Number 3, May-June 2005
Special issue on Low Mach Number Flows Conference
Page(s) 561 - 576
DOI http://dx.doi.org/10.1051/m2an:2005016
Published online 15 June 2005
  1. M. Dumbser and C.-D. Munz, Arbitrary High Order Discontinuous Galerkin Schemes. IRMA series in mathematics and theoretical physics.
  2. R. Fortenbach and C.-D. Munz, Multiple Scale considerations for sound generation in low Mach number flow, in Proc. The GAMM Jahrestagung, Augsburg, Germany, March 25–28 (2002).
  3. K. Geratz, Erweiterung eines Godunov-Typ-Verfahrens für zwei-dimensionale kompressible Strömungen auf die Fälle kleiner und verschwindender Machzahl. Ph.D. Thesis, RWTH Aachen (1997).
  4. J. Hardin and D. Pope, An acoustic/viscous splitting technique for computational aeroacoustics. Theoret. Comput. Fluid Dynamics 6 (1994) 323–340. [CrossRef]
  5. S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible Limit of Compressible Fluids. Comm. Pure Appl. Math. 34 (1981) 481–524. [CrossRef] [MathSciNet]
  6. R. Klein, Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics I: One dimensional flow. J. Comput. Phys. 121 (1995) 213–237. [CrossRef] [MathSciNet]
  7. R. Klein, N. Botta, L. Hofmann, A. Meister, C.-D. Munz, S. Roller and T. Sonar, Asymptotic adaptive methods for multiscale problems in fluid mechanics. J. Engrg. Math. 39 (2001) 261–343. [CrossRef] [MathSciNet]
  8. A. Meister, Asymptotic single and multiple scale expansions in the mow Mach number limit. SIAM J. Appl. Math. 60 (1999) 256–271. [CrossRef] [MathSciNet]
  9. B.E. Mitchell, S.K. Lele and P. Moin, Direct computation of the sound from a compressible co-rotating vortex pair. J. Fluid Mech. 285 (1995) 181–202. [CrossRef] [MathSciNet]
  10. C.-D. Munz, S. Roller, R. Klein and K.J. Geratz, The extension of incompressible flow solvers to the weakly compressible regime. Comput. Fluids 32 (2003) 173–196. [CrossRef] [MathSciNet]
  11. S. Roller, Ein numerisches verfahren zur simulation schwach kompressibler Strömungen. Ph.D. Thesis, University of Stuttgart (2004).
  12. S. Roller and C.-D. Munz, A low Mach number scheme based on multi-scale asymptotics. Comput. Visual. Sci. 3 (2000) 85–91. [CrossRef]
  13. T. Schneider, N. Botta, K. Geratz and R. Klein, Extension of finite volume compressible flow solvers to multi-dimensional, variable density zero Mach number flow. J. Comput. Phys. 155 (1999) 248–286. [CrossRef] [MathSciNet]
  14. T. Schwartzkopff, Finite-Volumen Verfahren hoher Ordnung und heterogene Gebietszerlegung für die numerische Aeroakustik. Ph.D. Thesis, University of Stuttgart (2005).
  15. T. Schwartzkopff and C.-D. Munz, Direct simulation of aeroacoustics, in Proc. Applied Mathematics and Mechanics (GAMM 2002) 2 (2002).
  16. T. Schwartzkopff and C.-D. Munz, Direct simulation of aeroacoustics, in Analysis and Simulation of Multifield Problems, W. Wendland and M. Efendiev, Eds., Springer. Lect. Notes Appl. Comput. Mech. 12 (2003) 337–342.
  17. T. Schwartzkopff, M. Dumbser and C.-D. Munz, CAA using domain decomposition and high order methods on structured and unstructured meshes, in 10th AIAA/CEAS Aeroacoustic Conference, Manchester, GB (2004).
  18. T. Schwartzkopff, M. Dumbser and C.-D. Munz, Fast high order ADER schemes for linear hyperbolic equations. J. Comput. Phys. 197 (2004) 532–539. [CrossRef]
  19. T. Schwartzkopff, C.-D. Munz, E. Toro and R. Millington, ADER-2d: A very high-order approach for linear hyperbolic systems, in Proceedings of ECCOMAS CFD Conference 2001 (September 2001).
  20. E. Toro and R. Millington, ADER: High-order non-oscillatory advection schemes, in Proceedings of the 8th International Conference on Nonlinear Hyperbolic Problems, preprint (February 2000).

Recommended for you