Free access
Issue
ESAIM: M2AN
Volume 39, Number 3, May-June 2005
Special issue on Low Mach Number Flows Conference
Page(s) 577 - 590
DOI http://dx.doi.org/10.1051/m2an:2005023
Published online 15 June 2005
  1. A. Baston, M. Lucchesini, L. Manfriani, L. Polito and G. Lombardi, Evaluation of pressure distributions on an aircraft by two different panel methods and comparison with experimental measurements, in 15th Int. Council of the Aeronautical Sciences Congress, London (1986) 618–628.
  2. L. d'Agostino, E. Rapposelli, C. Pascarella and A. Ciucci, A Modified Bubbly Isenthalpic Model for Numerical Simulation of Cavitating Flows, in 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, USA, July 8–11 (2001).
  3. M. Deshpande, J. Feng and C. Merkle, Navier-Stokes analysis of 2-D cavity flows. ASME Cavitation and Multiphase Flow Forum, FED-153 (1993) 149–155.
  4. P. Glaister, A Riemann Solver for barotropic flow. J. Comput. Phys. 93 (1991) 477–480. [CrossRef] [MathSciNet]
  5. H. Guillard and C. Viozat, On the behaviour of upwind schemes in the low Mach number limit. Comput. Fluids 28 (1999) 63–86. [CrossRef] [MathSciNet]
  6. G. Jiang and C. Shu, Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126 (1996) 202–228. [NASA ADS] [CrossRef] [MathSciNet]
  7. D. Li and C. Merkle, Application of a general structured-unstructured solver to flows of arbitrary fluids, in First International Conference on Computational Fluid Dynamics, Kyoto, Japan, July 10–14 (2000).
  8. D. Li, G. Xia and C. Merkle, Analysis of real fluid flows in converging diverging nozzles. AIAA Paper 2003-4132 (2003), submitted.
  9. D. Li, S. Venkateswaran, K. Fakhari and C. Merkle, Convergence assessment of general fluid equations on unstructured hybrid grids. AIAA Paper 2001-2557 (2001).
  10. S. Pandya, S. Venkateswaran and T. Pulliam, Implementation of preconditioned dual-time procedures in OVERFLOW. AIAA Paper 2003-0072 (2003).
  11. E. Rapposelli, A. Cervone, C. Bramanti and L. d'Agostino, Thermal cavitation experiments on a NACA 0015 hydrofoil, in Proc. of FEDSM'03 4th ASME/JSME Joint Fluids Engineering conference, Honolulu, Hawaii, USA, July 6–11 (2003).
  12. P.L. Roe, Approximate Riemann solvers, parameters vectors, and difference schemes. J. Comput. Phys. 43 (1981) 357–372. [NASA ADS] [CrossRef] [MathSciNet]
  13. E. Sinibaldi, F. Beux and M.V. Salvetti, A preconditioned implicit Roe's scheme for barotropic flows: towards simulation of cavitation phenomena. INRIA research report No. 4891 (2003).
  14. E. Sinibaldi, F. Beux and M.V. Salvetti, A preconditioned compressible flow solver for numerical simulation of 3D cavitation phenomena, ECCOMAS 2004, 4th European Congress on Computational Methods in Applied Sciences and Engineering, Jyväskylä, Finland, July 24–28 (2004).
  15. E. Turkel, Preconditioned methods for solving the incompressible and low speed compressible equations. J. Comput. Phys. 72 (1987) 277–298. [CrossRef]
  16. S. Venkateswaran and C. Merkle, Analysis of preconditioning methods for Euler and Navier-Stokes equations. Formula VKI computational fluid dynamics lecture series (1999).
  17. S. Venkateswaran, D. Li and C. Merkle, Influence of stagnation regions on preconditined solutions at low speeds. AIAA Paper 2003-0435 (2003).
  18. D.C. Wilcox, Turbulence Modeling for CFD. DCW Industries, Inc., ISBN 0-9636051-5-1 (1998).

Recommended for you