Free access
Issue
ESAIM: M2AN
Volume 39, Number 4, July-August 2005
Page(s) 727 - 753
DOI http://dx.doi.org/10.1051/m2an:2005032
Published online 15 August 2005
  1. M. Ainsworth and J. Coyle, Hierarchic hp-edge element families for Maxwell's equations on hybrid quadrilateral/triangular meshes. Comput. Methods Appl. Mech. Engrg. 190 (2001) 6709–6733. [CrossRef] [MathSciNet]
  2. C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains. Math. Models Appl. Sci. 21 (1998) 823–864.
  3. D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2001) 1749–1779. [CrossRef] [MathSciNet]
  4. D. Boffi and L. Gastaldi, Edge finite elements for the approximation of Maxwell resolvent operator. ESAIM: M2AN 36 (2002) 293–305. [CrossRef] [EDP Sciences]
  5. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics 15, Springer-Verlag, New York (1994).
  6. Z. Chen, Q. Du and J. Zou, Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients. SIAM J. Numer. Anal. 37 (2000) 1542–1570. [CrossRef] [MathSciNet]
  7. P.G. Ciarlet, The finite element method for elliptic problems. North–Holland, Amsterdam (1978).
  8. L. Demkowicz and L. Vardapetyan, Modeling of electromagnetic absorption/scattering problems using hp–adaptive finite elements. Comput. Methods Appl. Mech. Engrg. 152 (1998) 103–124. [CrossRef] [MathSciNet]
  9. P. Fernandes and G. Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7 (1997) 957–991. [CrossRef] [MathSciNet]
  10. R. Hiptmair, Finite elements in computational electromagnetism. Acta Numerica 11 (2002) 237–339. [CrossRef] [MathSciNet]
  11. P. Houston, I. Perugia and D. Schötzau, hp-DGFEM for Maxwell's equations, in Numerical Mathematics and Advanced Applications ENUMATH 2001, F. Brezzi, A. Buffa, S. Corsaro, and A. Murli, Eds., Springer-Verlag (2003) 785–794.
  12. P. Houston, I. Perugia and D. Schötzau, Mixed discontinuous Galerkin approximation of the Maxwell operator. SIAM J. Numer. Anal. 42 (2004) 434–459. [CrossRef] [MathSciNet]
  13. P. Houston, I. Perugia and D. Schötzau, Mixed discontinuous Galerkin approximation of the Maxwell operator: Non-stabilized formulation. J. Sci. Comput. 22 (2005) 325–356.
  14. P. Houston, I. Perugia, A. Schneebeli and D. Schötzau, Interior penalty method for the indefinite time-harmonic Maxwell equations. Numer. Math. 100 (2005) 485–518.
  15. O.A. Karakashian and F. Pascal, A posteriori error estimation for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 2374–2399. [CrossRef] [MathSciNet]
  16. J. L. Lions and E. Magenes, Problèmes aux Limites Non-Homogènes et Applications. Dunod, Paris (1968).
  17. P. Monk, A finite element method for approximating the time-harmonic Maxwell equations. Numer. Math. 63 (1992) 243–261. [CrossRef] [MathSciNet]
  18. P. Monk, Finite element methods for Maxwell's equations. Oxford University Press, New York (2003).
  19. P. Monk, A simple proof of convergence for an edge element discretization of Maxwell's equations, in Computational electromagnetics, C. Carstensen, S. Funken, W. Hackbusch, R. Hoppe and P. Monk, Eds., Springer-Verlag, Lect. Notes Comput. Sci. Engrg. 28 (2003) 127–141.
  20. J.C. Nédélec, A new family of mixed finite elements in Formula . Numer. Math. 50 (1986) 57–81. [CrossRef] [MathSciNet]
  21. I. Perugia and D. Schötzau, The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations. Math. Comput. 72 (2003) 1179–1214.
  22. I. Perugia, D. Schötzau and P. Monk, Stabilized interior penalty methods for the time-harmonic Maxwell equations. Comput. Methods Appl. Mech. Engrg. 191 (2002) 4675–4697. [CrossRef] [MathSciNet]
  23. A. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comp. 28 (1974) 959–962. [CrossRef] [MathSciNet]
  24. L. Vardapetyan and L. Demkowicz, hp-adaptive finite elements in electromagnetics. Comput. Methods Appl. Mech. Engrg. 169 (1999) 331–344. [CrossRef] [MathSciNet]

Recommended for you