Free access
Issue
ESAIM: M2AN
Volume 39, Number 5, September-October 2005
Page(s) 909 - 929
DOI http://dx.doi.org/10.1051/m2an:2005040
Published online 15 September 2005
  1. M.S. Agranovich, Elliptic boundary problems, Partial differential equations IX. M.S. Agranovich, Yu.V. Egorov and M.A. Shubin, Eds., Springer. Encyclopaedia Math. Sci. 79 (1997) 1–144.
  2. Å. Björck, Numerical methods for least squares problems, SIAM (1996).
  3. H. Borouchaki, P.L. George and B. Mohammadi, Delaunay mesh generation governed by metric specifications. Parts i & ii. Finite Elem. Anal. Des., Special Issue on Mesh Adaptation (1996) 345–420.
  4. M. Castro-Diaz, F. Hecht and B. Mohammadi, Anisotropic grid adaptation for inviscid and viscous flows simulations. Int. J. Numer. Meth. Fl. 25 (1995) 475–491. [CrossRef]
  5. A. Douglis and L. Nirenberg, Interior estimates for elliptic systems of partial differential equations. Comm. Pure Appl. Math. 8 (1955) 503–538. [CrossRef] [MathSciNet]
  6. P.I. Dudnikov and S.N. Samborski, Linear overdetermined systems of partial differential equations. Initial and initial-boundary value problems, Partial Differential Equations VIII, M.A. Shubin, Ed., Springer-Verlag, Berlin/Heidelberg. Encyclopaedia Math. Sci. 65 (1996) 1–86.
  7. Femlab 3.0, http://www.comsol.com/products/femlab/
  8. FreeFem, http://www.freefem.org/
  9. P.L. George, Automatic mesh generation. Applications to finite element method, Wiley (1991).
  10. R. Glowinski, Finite element methods for incompressible viscous flow. Handb. Numer. Anal. Vol. IX, North-Holland, Amsterdam (2003) 3–1176.
  11. F. Hecht and B. Mohammadi, Mesh adaptation by metric control for multi-scale phenomena and turbulence. American Institute of Aeronautics and Astronautics 97-0859 (1997).
  12. B. Jiang, J. Wu and L. Povinelli, The origin of spurious solutions in computational electromagnetics. J. Comput. Phys. 7 (1996) 104–123. [CrossRef]
  13. K. Krupchyk, W. Seiler and J. Tuomela, Overdetermined elliptic PDEs. J. Found. Comp. Math., submitted.
  14. E.L. Mansfield, A simple criterion for involutivity. J. London Math. Soc. (2) 54 (1996) 323–345. [MathSciNet]
  15. B. Mohammadi and J. Tuomela, Involutivity and numerical solution of PDE systems, in Proc. of ECCOMAS 2004, Vol. 1, Jyväskylä, Finland. P. Neittaanmäki, T. Rossi, K. Majava and O. Pironneau, Eds., University of Jyväskylä (2004) 1–10.
  16. F. Nicoud, Conservative high-order finite-difference schemes for low-Mach number flows. J. Comput. Phys. 158 (2000) 71–97. [CrossRef] [MathSciNet]
  17. O. Pironneau, Finite element methods for fluids, Wiley (1989).
  18. J.F. Pommaret, Systems of partial differential equations and Lie pseudogroups. Math. Appl., Gordon and Breach Science Publishers 14 (1978).
  19. R.F. Probstein, Physicochemical hydrodynamics, Wiley (1995).
  20. A. Quarteroni and A. Valli, Numerical approximation of partial differential equations. Springer Ser. Comput. Math. 23 (1994).
  21. W.M. Seiler, Involution — the formal theory of differential equations and its applications in computer algebra and numerical analysis, Habilitation thesis, Dept. of Mathematics, Universität Mannheim (2001) (manuscript accepted for publication by Springer-Verlag).
  22. D. Spencer, Overdetermined systems of linear partial differential equations. Bull. Am. Math. Soc. 75 (1969) 179–239. [CrossRef] [MathSciNet]
  23. J. Tuomela and T. Arponen, On the numerical solution of involutive ordinary differential systems. IMA J. Numer. Anal. 20 (2000) 561–599. [CrossRef] [MathSciNet]
  24. J. Tuomela and T. Arponen, On the numerical solution of involutive ordinary differential systems: Higher order methods. BIT 41 (2001) 599–628. [CrossRef] [MathSciNet]
  25. J. Tuomela, T. Arponen and V. Normi, On the numerical solution of involutive ordinary differential systems: Enhanced linear algebra. IMA J. Numer. Anal., submitted.

Recommended for you