Free access
Issue
ESAIM: M2AN
Volume 39, Number 5, September-October 2005
Page(s) 995 - 1017
DOI http://dx.doi.org/10.1051/m2an:2005043
Published online 15 September 2005
  1. J. Alberty, C. Carstensen and S.A. Funken, Remarks around 50 lines of Matlab: finite element implementation. Numer. Algorithms 20 (1999) 117–137. [CrossRef] [MathSciNet]
  2. W.F. Brown, Micromagnetics. Interscience, New York (1963).
  3. C. Carstensen and S. Funken, Adaptive coupling of penalised finite element methods and boundary element methods for relaxed micromagnetics. In preparation.
  4. C. Carstensen and D. Praetorius, Numerical analysis for a macroscopic model in micromagnetics. SIAM J. Numer. Anal. 42 (2005) 2633–2651, electronic. [CrossRef] [MathSciNet]
  5. C. Carstensen and A. Prohl, Numerical analysis of relaxed micromagnetics by penalized finite elements. Numer. Math. 90 (2001) 65–99. [CrossRef] [MathSciNet]
  6. A. De Simone, Energy minimizers for large ferromagnetic bodies. Arch. Rational Mech. Anal. 125 (1993) 99–143. [CrossRef] [MathSciNet]
  7. S.A. Funken and A. Prohl, On stabilized finite element methods in relaxed micromagnetism. Preprint 99-18, University of Kiel (1999).
  8. A. Hubert and R. Schäfer, Magnetic Domains. Springer (1998).
  9. P. Keast, Moderate-degree tetrahedral quadrature formulas. Comput. Methods Appl. Mech. Engrg. 55 (1986) 339–348. [CrossRef] [MathSciNet]
  10. M. Kružík, Maximum principle based algorithm for hysteresis in micromagnetics. Adv. Math. Sci. Appl. 13 (2003) 461–485. [MathSciNet]
  11. M. Kružík and A. Prohl, Young measure approximation in micromagnetics. Numer. Math. 90 (2001) 291–307. [CrossRef] [MathSciNet]
  12. M. Kružík and A. Prohl, Macroscopic modeling of magnetic hysteresis. Adv. Math. Sci. Appl. 14 (2004) 665–681. [MathSciNet]
  13. M. Kružík and A. Prohl, Recent developments in modeling, analysis and numerics of ferromagnetism. SIAM Rev. (accepted, 2005).
  14. M. Kružík and T. Roubíček, Microstructure evolution model in micromagnetics. Z. Angew. Math. Phys. 55 (2004) 159–182. [CrossRef] [MathSciNet]
  15. M. Kružík and T. Roubíček, Interactions between demagnetizing field and minor-loop development in bulk ferromagnets. J. Magn. Magn. Mater. 277 (2004) 192–200. [CrossRef]
  16. P. Pedregal, Parametrized Measures and Variational Principles. Birkhäuser (1997).
  17. A. Prohl, Computational micromagnetism. Teubner (2001).
  18. R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner (1996).

Recommended for you