Free access
Issue
ESAIM: M2AN
Volume 39, Number 6, November-December 2005
Page(s) 1251 - 1269
DOI http://dx.doi.org/10.1051/m2an:2005046
Published online 15 November 2005
  1. J. Cahouet, On some difficulties occurring in the simulation of incompressible fluid flows by domain decomposition methods, in Proc. of the First International Symposium On Domain Decomposition Methods for Partial Differential Equations, R. Glowinski, G. Golub, G. Meurant and J. Periaux Eds., SIAM, Philadelphia, PA (1988).
  2. X.C Cai, D.E. Keyes and V. Venkatakrishnan, Newton-Krylov-Schwarz: An implicit solver for CFD, in Proc. of the Eighth International Conference on Domain Decomposition Methods in Science and Engineering, R. Glowinski, J. Periaux, Z.C. Shi and O.B. Widlund Eds., Wiley, Strasbourg (1997).
  3. T.F. Chan and T.P. Mathew, Domain decomposition algorithm. Acta Numerica (1994) 61–143.
  4. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978).
  5. Q.V. Dinh, R. Glowinski, J. Periaux and G. Terrasson, On the coupling of viscous and inviscid models for incompressible fluid flows via domain decomposition, in Proc. the First International Symposium On Domain Decomposition Methods for Partial Differential Equations, R. Glowinski, G. Golub, G. Meurant and J. Periaux Eds., SIAM, Philadelphia, PA (1988).
  6. L. Fatone, P. Gervasio and A. Quarteroni, Multimodels for incompressible flows. J. Math. Fluid Dynamics 2 (2000) 126–150.
  7. M. Fortin and R. Aboulaich, Schwarz's Decomposition Method for Incompressible Flow Problems, in Proc. of the First International Symposium On Domain Decomposition Methods for Partial Differential Equations, R. Glowinski, G. Golub, G. Meurant and J. Periaux Eds., SIAM, Philadelphia, PA (1988).
  8. V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Spring-Verlag, Berlin (1986).
  9. M. Gunzburger and H.K. Lee, An optimization-based domain decomposition method for the Navier-Stokes equations. SIAM J. Numer. Anal. 37 (2000) 1455–1480. [CrossRef] [MathSciNet]
  10. M. Gunzburger and R. Nicolaides, On substructuring algorithms and solution techniques for numerical approximation of partial differential equations. Appl. Numer. Math. 2 (1986) 243–256. [CrossRef] [MathSciNet]
  11. P. Le Tallec, Domain decomposition methods in computational mechanics. Comput. Mech. Adv. 1 (1994) 121–220. [MathSciNet]
  12. P.L. Lions, On the Schwarz alternating method, in Proc. of the First International Symposium on Domain Decomposition Methods for Partial Differential Equations, R. Glowinski, G.H. Golub, G.A. Meurant and J. Periaux Eds., SIAM, Philadelphia (1988) 1–42.
  13. S.H. Lui, On Schwarz alternating methods for nonlinear PDEs. SIAM J. Sci. Comput. 21 (2000) 1506–1523. [CrossRef]
  14. S.H. Lui, On Schwarz alternating methods for the incompressible Navier-Stokes equations. SIAM J. Sci. Comput. 22 (2001) 1974–1986. [CrossRef]
  15. S.H. Lui, On linear monotone iteration and Schwarz methods for nonlinear elliptic PDEs. Numer. Math. 93 (2002) 109–129. [MathSciNet]
  16. L.D. Marini and A. Quarteroni, A relaxation procedure for domain decomposition methods using finite elements. Numer. Math. 55 (1989) 575–598. [CrossRef] [MathSciNet]
  17. A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations. Oxford Science Publications (1999).
  18. B.F. Smith, P.E. Bjorstad and W.D. Gropp, Domain Decomposition: Parallel Multilevel Algorithms for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge, UK (1996).
  19. R. Teman, The Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland, Amsterdam (1977).
  20. J. Xu and J. Zou, Some nonoverlapping domain decomposition methods. SIAM Rev. 40 (1998) 867–914.

Recommended for you