Free access
Issue
ESAIM: M2AN
Volume 40, Number 1, January-February 2006
Page(s) 149 - 173
DOI http://dx.doi.org/10.1051/m2an:2006002
Published online 23 February 2006
  1. Y. Achdou and O. Pironneau, Volatility smile by multilevel least square. Int. J. Theor. Appl. Finance 5 (2002) 619–643. [CrossRef] [MathSciNet]
  2. G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi. Springer-Verlag, Paris. Math. Appl. (Berlin) 17 (1994).
  3. G. Barles and E. Jakobsen, On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations. ESAIM: M2AN 36 (2002) 33–54. [CrossRef] [EDP Sciences]
  4. E. Barron and R. Jensen, The Pontryagin maximum principle from dynamic programming and viscosity solutions to first-order partial differential equations. Trans. Amer. Math. Soc. 298 (1986) 635–641. [CrossRef] [MathSciNet]
  5. M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, with appendices by M. Falcone and P. Soravia, Systems and Control: Foundations and Applications. Birkhäuser Boston, Inc., Boston, MA (1997).
  6. P. Cannarsa and H. Frankowska, Some characterizations of the optimal trajectories in control theory. SIAM J. Control Optim. 29 (1991) 1322–1347. [CrossRef] [MathSciNet]
  7. P. Cannarsa, A. Mennucci and C. Sinestrari, Regularity results for solutions of a class of Hamilton-Jacobi equations. Arch. Rational Mech. Anal. 140 (1997) 197–223. [CrossRef] [MathSciNet]
  8. J. Carlsson, M. Sandberg and A. Szepessy, Symplectic Pontryagin approximations for optimal design, preprint www.nada.kth.se/~szepessy.
  9. M. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 277 (1983) 1–42. [CrossRef] [MathSciNet]
  10. M. Crandall and P.-L. Lions, Two approximations of solutions of Hamilton-Jacobi equations. Math. Comp. 43 (1984) 1–19. [CrossRef] [MathSciNet]
  11. M. Crandall, L.C. Evans and P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 282 (1984) 487–502. [CrossRef] [MathSciNet]
  12. B. Dupire, Pricing with a smile. Risk (1994) 18–20.
  13. H. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems. Kluwer Academic Publishers Group, Dordrecht. Math. Appl. 375 (1996).
  14. L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI (1998).
  15. M. Falcone and R. Ferretti, Semi-Lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods. J. Comput. Phys. 175 (2002) 559–575. [CrossRef] [MathSciNet]
  16. H. Frankowska, Contigent cones to reachable sets of control systems. SIAM J. Control Optim. 27 (1989) 170–198. [CrossRef] [MathSciNet]
  17. R. Glowinski and J.-L. Lions, Exact and approximate controllability for distributed parameter systems. Acta numerica (1994), 269–378, Acta Numer., Cambridge Univ. Press, Cambridge (1994).
  18. R. Glowinski and J.-L. Lions, Exact and approximate controllability for distributed parameter systems. Acta numerica (1995), 159–333, Acta Numer., Cambridge Univ. Press, Cambridge (1995).
  19. E. Harrier, C. Lubich and G. Wanner, Geometric Numerical Integrators: Structure Preserving Algorithms for Ordinary Differential Equations, Springer (2002).
  20. C.-T. Lin and E. Tadmor, L1-stability and error estimates for approximate Hamilton-Jacobi solutions. Numer. Math. 87 (2001) 701–735. [CrossRef] [MathSciNet]
  21. B. Mohammadi and O. Pironneau, Applied Shape Optimization for Fluids. Numerical Mathematics and Scientific Computation. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (2001).
  22. P. Pedregal, Optimization, relaxation and Young measures. Bull. Amer. Math. Soc. (N.S.) 36 (1999) 27–58.
  23. E. Polak, Optimization, Algorithms and Consistent Approximations, Springer-Verlag, New York. Appl. Math. Sci. 124. (1997).
  24. L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The Mathematical Theory of Optimal Processes, Pergamon Press (1964).
  25. M. Sandberg, Convergence rates for Euler approximation of non convex differential inclusions, work in progress.
  26. M. Sandberg, Convergence rates for Symplectic Euler approximations of the Ginzburg-Landau equation, work in progress.
  27. P. Souganidis, Existence of viscosity solutions of Hamilton-Jacobi equations. J. Differential Equations 56 (1985) 345–390. [CrossRef] [MathSciNet]
  28. A. Subbotin, Generalized Solutions of First-Order PDEs. The Dynamical Optimization Perspective. Translated from the Russian. Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA (1995).
  29. C. Vogel, Computational Methods for Inverse Problems. Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002).
  30. L.C. Young, Lectures on the Calculus of Variations and Optimal Control Theory. Saunders Co., Philadelphia-London-Toronto, Ont. (1969).

Recommended for you