 D.N. Arnold, F. Brezzi and J. Douglas, PEERS: A new mixed finite element method for plane elasticity. Japan J. Appl. Math. 1 (1984) 347–367. [CrossRef] [MathSciNet]
 D.N. Arnold, F. Brezzi and M. Fortin, A stable finite element method for the Stokes equations. Calcolo 21 (1984) 337–344. [CrossRef] [MathSciNet]
 D.N. Arnold, J. Douglas and Ch.P. Gupta, A family of higher order mixed finite element methods for plane elasticity. Numer. Math. 45 (1984) 1–22. [CrossRef] [MathSciNet]
 D. Arnold and R. Falk, Wellposedness of the fundamental boundary value problems for constrained anisotropic elastic materials. Arch. Rational Mech. Analysis 98 (1987) 143–190.
 I. Babuška and G.N. Gatica, On the mixed finite element method with Lagrange multipliers. Numer. Methods Partial Differential Equations 19 (2003) 192–210. [CrossRef] [MathSciNet]
 M. Barrientos, G.N. Gatica and E.P. Stephan, A mixed finite element method for nonlinear elasticity: twofold saddle point approach and a posteriori error estimate. Numer. Math. 91 (2002) 197–222. [CrossRef] [MathSciNet]
 T.P. Barrios, G.N. Gatica and F. Paiva, A waveletbased stabilization of the mixed finite element method with Lagrange multipliers. Appl. Math. Lett. (in press).
 D. Braess, Finite Elements. Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge University Press (1997).
 F. Brezzi and J. Douglas, Stabilized mixed methods for the Stokes problem. Numer. Math. 53 (1988) 225–235. [CrossRef] [MathSciNet]
 F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. SpringerVerlag (1991).
 F. Brezzi and M. Fortin, A minimal stabilisation procedure for mixed finite element methods. Numer. Math. 89 (2001) 457–491. [CrossRef] [MathSciNet]
 F. Brezzi, J. Douglas and L.D. Marini, Variable degree mixed methods for second order elliptic problems. Mat. Apl. Comput. 4 (1985) 19–34. [MathSciNet]
 F. Brezzi, J. Douglas and L.D. Marini, Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47 (1985) 217–235. [CrossRef] [MathSciNet]
 F. Brezzi, M. Fortin and L.D. Marini, Mixed finite element methods with continuous stresses. Math. Models Methods Appl. Sci. 3 (1993) 275–287. [CrossRef] [MathSciNet]
 D. Chapelle and R. Stenberg, Lockingfree mixed stabilized finite element methods for bendingdominated shells, in Plates and shells (Quebec, QC, 1996), American Mathematical Society, Providence, RI, CRM Proceedings Lecture Notes 21 (1999) 81–94.
 P.G. Ciarlet, The Finite Element Method for Elliptic Problems. NorthHolland (1978).
 J. Douglas and J. Wan, An absolutely stabilized finite element method for the Stokes problem. Math. Comput. 52 (1989) 495–508. [CrossRef]
 H.Y. Duan and G.P. Liang, Analysis of some stabilized loworder mixed finite element methods for ReissnerMindlin plates. Comput. Methods Appl. Mech. Engrg. 191 (2001) 157–179. [MathSciNet]
 L.P. Franca, New Mixed Finite Element Methods. Ph.D. Thesis, Stanford University (1987).
 L.P. Franca and T.J.R. Hughes, Two classes of finite element methods. Comput. Methods Appl. Mech. Engrg. 69 (1988) 89–129.
 L.P. Franca and A. Russo, Unlocking with residualfree bubbles. Comput. Methods Appl. Mech. Engrg. 142 (1997) 361–364. [CrossRef] [MathSciNet]
 L.P. Franca and R. Stenberg, Error analysis of Galerkin least squares methods for the elasticity equations. SIAM J. Numer. Anal. 28 (1991) 1680–1697. [CrossRef] [MathSciNet]
 C.O. Horgan, Korn's inequalities and their applications in continuum mechanics. SIAM Rev. 37 (1995) 491–511. [CrossRef] [MathSciNet]
 C.O. Horgan and J.K. Knowles, Eigenvalue problems associated with Korn's inequalities. Arch. Rational Mech. Anal. 40 (1971) 384–402.
 C.O. Horgan and L.E. Payne, On inequalities of Korn, Friedrichs and BabuškaAziz. Arch. Rational Mech. Analysis 82 (1983) 165–179.
 N. Kechkar and D. Silvester, Analysis of locally stabilized mixed finite element methods for the Stokes problem. Math. Comput. 58 (1992) 1–10. [CrossRef]
 G. Lube and A. Auge, Stabilized mixed finite element approximations of incompressible flow problems. Zeitschrift für Angewandte Mathematik und Mechanik 72 (1992) T483–T486.
 W. McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press (2000).
 A. Masud and T.J.R. Hughes, A stabilized mixed finite element method for Darcy flow. Comput. Methods Appl. Mech. Engrg. 191 (2002) 4341–4370. [CrossRef] [MathSciNet]
 R. Nascimbene and P. Venini, A new lockingfree equilibrium mixed element for plane elasticity with continuous displacement interpolation. Comput. Methods Appl. Mech. Engrg 191 (2002) 1843–1860. [CrossRef] [MathSciNet]
 S. Norburn and D. Silvester, Fourier analysis of stabilized  mixed finite element approximation. SIAM J. Numer. Anal. 39 (2001) 817–833. [CrossRef] [MathSciNet]
 R. Stenberg, A family of mixed finite elements for the elasticity problem. Numer. Math. 53 (1988) 513–538. [CrossRef] [MathSciNet]
 T. Zhou, Stabilized hybrid finite element methods based on the combination of saddle point principles of elasticity problems. Math. Comput. 72 (2003) 1655–1673. [CrossRef]
 T. Zhou and L. Zhou, Analysis of locally stabilized mixed finite element methods for the linear elasticity problem. Chinese J. Engrg Math. 12 (1995) 1–6.
Free access
Issue 
ESAIM: M2AN
Volume 40, Number 1, JanuaryFebruary 2006



Page(s)  1  28  
DOI  http://dx.doi.org/10.1051/m2an:2006003  
Published online  23 February 2006 