Free access
Volume 40, Number 1, January-February 2006
Page(s) 29 - 48
Published online 23 February 2006
  1. M. Ainsworth, W. McLean and T. Tran, The conditioning of boundary element equations on locally refined meshes and preconditioning by diagonal scaling. SIAM J. Numer. Anal. 36 (1999) 1901–1932. [CrossRef] [MathSciNet]
  2. I. Babuška and A.K. Aziz, Survey lectures on the mathematical foundations of the finite element method, in The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, MD, 1972). Academic Press, New York (1972) 1–359.
  3. R.E. Bank and L.R. Scott, On the conditioning of finite element equations with highly refined meshes. SIAM J. Numer. Anal. 26 (1989) 1383–1384. [CrossRef] [MathSciNet]
  4. S.C. Brenner and R.L. Scott, The Mathematical Theory of Finite Element Methods. Springer, New York, Texts Appl. Math. 15 (1994).
  5. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978).
  6. J.-P. Croisille, Finite volume box schemes and mixed methods. ESAIM: M2AN 34 (2000) 1087–1106. [CrossRef] [EDP Sciences]
  7. J.-P. Croisille and I. Greff, Some nonconforming mixed box schemes for elliptic problems. Numer. Methods Partial Differential Equations 18 (2002) 355–373. [CrossRef] [MathSciNet]
  8. A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Springer-Verlag, New York. Appl. Math. Ser. 159 (2004)
  9. A. Ern and J.-L. Guermond, Discontinuous Galerkin methods for Friedrichs' systems. I. General theory. SIAM J. Numer. Anal. (2005) (in press).
  10. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986).
  11. G.H. Golub and C.F. van Loan, Matrix Computations. John Hopkins University Press, Baltimore, second edition (1989).
  12. C. Johnson, U. Nävert and J. Pitkäranta, Finite element methods for linear hyperbolic equations. Comput. Methods Appl. Mech. Engrg. 45 (1984) 285–312. [CrossRef] [MathSciNet]
  13. J. Nečas, Sur une méthode pour résoudre les équations aux dérivées partielles de type elliptique, voisine de la variationnelle. Ann. Scuola Norm. Sup. Pisa 16 (1962) 305–326. [MathSciNet]
  14. Y. Saad, Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston (1996).
  15. K. Yosida, Functional Analysis, Classics in Mathematics. Springer-Verlag, Berlin (1995). Reprint of the sixth edition (1980).

Recommended for you