Free access
Issue
ESAIM: M2AN
Volume 40, Number 1, January-February 2006
Page(s) 49 - 61
DOI http://dx.doi.org/10.1051/m2an:2006007
Published online 23 February 2006
  1. D. Braess, Asymptotics for the approximation of wave functions by exponential sums. J. Approx. Theory 83 (1995) 93–103. [CrossRef] [MathSciNet]
  2. H.-J. Bungartz and M. Griebel, Sparse grids. Acta Numerica 13 (2004) 147–269. [CrossRef] [MathSciNet]
  3. A. Cohen, R.A. DeVore and R. Hochmuth, Restricted nonlinear approximation. Constr. Approx. 16 (2000) 85–113. [CrossRef] [MathSciNet]
  4. R.A. DeVore, Nonlinear approximation. Acta Numerica 7 (1998) 51–150. [CrossRef]
  5. R.A. DeVore, B. Jawerth and V. Popov, Compression of wavelet decompositions. Amer. J. Math. 114 (1992) 737–785. [CrossRef] [MathSciNet]
  6. R.A. DeVore, S.V. Konyagin and V.N. Temlyakov, Hyperbolic wavelet approximation. Constr. Approx. 14 (1998) 1–26. [CrossRef] [MathSciNet]
  7. H.-J. Flad, W. Hackbusch, D. Kolb and R. Schneider, Wavelet approximation of correlated wavefunctions. I. Basics. J. Chem. Phys. 116 (2002) 9641–9657. [CrossRef]
  8. H.-J. Flad, W. Hackbusch, H. Luo and D. Kolb, Diagrammatic multiresolution analysis for electron correlations. Phys. Rev. B. 71 (2005) 125115. [CrossRef]
  9. H.-J. Flad, W. Hackbusch, H. Luo and D. Kolb, Wavelet approach to quasi two-dimensional extended many-particle systems. I. supercell Hartree-Fock method. J. Comp. Phys. 205 (2005) 540–566. [CrossRef]
  10. S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and T. Ostergaard S orensen, On the regularity of the density of electronic wavefunctions. Contemp. Math. 307 (2002) 143–148.
  11. S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and T. Ostergaard S orensen, The electron density is smooth away from the nuclei. Commun. Math. Phys. 228 (2002) 401–415. [CrossRef]
  12. J. Garcke and M. Griebel, On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique. J. Comp. Phys. 165 (2000) 694–716. [CrossRef] [MathSciNet]
  13. A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper and J. Olsen, Basis-set convergence of the energy in molecular Hartree-Fock calculations. Chem. Phys. Lett. 302 (1999) 437–446. [CrossRef]
  14. R.J. Harrison, G.I. Fann, T. Yanai, Z. Gan and G. Beylkin, Multiresolution quantum chemistry: Basic theory and initial applications. J. Chem. Phys. 121 (2004) 11587–11598. [CrossRef] [PubMed]
  15. T. Helgaker, P. Jørgensen and J. Olsen, Molecular Electronic-Structure Theory, Wiley, New York (1999).
  16. R.N. Hill, Rates of convergence and error estimation formulas for the Rayleigh-Ritz variational method. J. Chem. Phys. 83 (1985) 1173–1196. [CrossRef]
  17. M. Hoffmann-Ostenhof and R. Seiler, Cusp conditions for eigenfunctions of n-electron systems, Phys. Rev. A 23 (1981) 21–23.
  18. M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and H. Stremnitzer, Local properties of Coulombic wave functions. Commun. Math. Phys. 163 (1994) 185–215. [CrossRef]
  19. M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and T. Ostergaard S orensen, Electron wavefunctions and densities for atoms. Ann. Henri Poincaré 2 (2001) 77–100. [CrossRef] [MathSciNet]
  20. T. Kato, On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math. 10 (1957) 151–177. [CrossRef] [MathSciNet]
  21. W. Kutzelnigg, Theory of the expansion of wave functions in a Gaussian basis. Int. J. Quantum Chem. 51 (1994) 447–463. [CrossRef]
  22. W. Kutzelnigg and J.D. Morgan III, Rates of convergence of the partial-wave expansions of atomic correlation energies. J. Chem. Phys. 96 (1992) 4484–4508. [CrossRef]
  23. E.H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems. Commun. Math. Phys. 53 (1977) 185–194. [CrossRef] [MathSciNet]
  24. H. Luo, D. Kolb, H.-J. Flad, W. Hackbusch and T. Koprucki, Wavelet approximation of correlated wavefunctions. II. Hyperbolic wavelets and adaptive approximation schemes. J. Chem. Phys. 117 (2002) 3625–3638. [CrossRef]
  25. P.-A. Nitsche, Best N-term approximation spaces for sparse grids, Research Report No. 2003-11, Seminar für Angewandte Mathematik, ETH Zürich.
  26. R. Schneider, Multiskalen- und Wavelet-Matrixkompression, Teubner, Stuttgart (1998).
  27. T. Yanai, G.I. Fann, Z. Gan, R.J. Harrison and G. Beylkin, Multiresolution quantum chemistry in multiwavelet basis: Hartree-Fock exchange. J. Chem. Phys. 121 (2004) 6680–6688. [CrossRef] [PubMed]
  28. T. Yanai, G.I. Fann, Z. Gan, R.J. Harrison and G. Beylkin, Multiresolution quantum chemistry in multiwavelet basis: Analytic derivatives for Hartree-Fock and density functional theory. J. Chem. Phys. 121 (2004) 2866–2876. [CrossRef] [PubMed]
  29. H. Yserentant, On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives. Numer. Math. 98 (2004) 731–759. [CrossRef] [MathSciNet]
  30. H. Yserentant, Sparse grid spaces for the numerical solution of the electronic Schrödinger equation. Numer. Math. 101 (2005) 381–389. [CrossRef] [MathSciNet]

Recommended for you