Free access
Volume 40, Number 2, March-April 2006
Page(s) 311 - 330
Published online 21 June 2006
  1. K. Amin and A. Khanna, Convergence of American option values from discrete- to continuous-time financial models. Math. Finance 4 (1994) 289–304. [CrossRef] [MathSciNet]
  2. V. Bally and G. Pages, A quantization algorithm for solving multi-dimensional discrete-time optimal stopping problems. Bernoulli 9 (2003) 1003–1049. [CrossRef] [MathSciNet]
  3. G. Barles, Ch. Daher and M. Romano, Convergence of numerical Schemes for problems arising in Finance theory. Math. Mod. Meth. Appl. Sci. 5 (1995) 125–143. [CrossRef]
  4. J. Bénard, R. Eymard, X. Nicolas and C. Chavant, Boiling in porous media: model and simulations. Transport Porous Med. 60 (2005) 1–31. [CrossRef]
  5. A. Bensoussan and J.L. Lions, Applications des inéquations variationnelles en contrôle stochastique, Dunod, Paris (1978). Application of variational inequalities in stochastic control, North Holland (1982).
  6. J. Berton and R. Eymard, Une méthode de volumes finis pour le calcul des options américaines, Congrès d'Analyse Numérique. La Grande Motte, France (2003).
  7. J. Berton, Méthodes de volumes finis pour des problèmes de mathématiques financières. Thèse de l'Université de Marne-la-Vallée, France (in preparation).
  8. P. Boyle, J. Evnine and S. Gibbs, Numerical evaluation of multivariate contingent claims. Rev. Financ. Stud. 2 (1989) 241–250. [CrossRef]
  9. M.J. Brennan and E. Schwartz, The valuation of the American put option. J. Financ. 32 (1977) 449–462. [CrossRef]
  10. H. Brézis, Analyse fonctionnelle (Théorie et applications). Dunod, Paris (1999).
  11. M. Broadie and J. Detemple, American option valuation: new bounds, approximations, and a comparison of existing methods securities using simulation. Rev. Financ. Stud. 9 (1996) 1221–1250.
  12. P. Carr, R. Jarrow and R. Myneni, Alternative characterizations of American put options. Math. Financ. 2 (1992) 87–106. [CrossRef]
  13. J.C. Cox, S.A. Ross and M. Rubinstein, Options pricing: A simplified approach. J. Financ. Econ. 7 (1979) 229–263. [CrossRef]
  14. J.N. Dewynne, S.D. Howison, I. Rupf and P. Wilmott, Some mathematical results in the pricing of American options, Eur. J. Appl. Math. 4 (1993) 381–398.
  15. R. Eymard, T. Gallouët and R. Herbin, Finite Volume Methods, in Handb. Numer. Anal., Ph. Ciarlet and J.L. Lions (Eds.) 7 (2000) 715–1022.
  16. R. Eymard, T. Gallouët and R. Herbin, Convergence of finite volume schemes for semilinear convection diffusion equations, Numer. Math. 82 (1999) 90–116.
  17. R. Eymard, T. Gallouët, R. Herbin and A. Michel, Convergence of a finite volume scheme for nonlinear degenerate parabolic equations, Numer. Math. 92 (2001) 41–82.
  18. P.W. Hemker, Sparse-grid finite-volume multigrid for 3D-problems. Adv. Comput. Math 4 (1995) 83–110. [CrossRef] [MathSciNet]
  19. P. Jaillet, D. Lamberton and B. Lapeyre, Variational inequalities and the pricing of American options. Acta Appl. Math. 21 3 (1990) 263–289.
  20. B. Kamrad and P. Ritchken, Multinomial approximating models for options with k-state variables. Manage. Sci. 37 (1991) 1640–1652. [CrossRef]
  21. O.A. Ladyzhenskaya, V.A. Solonnikov and N.N. Ural'tseva, Linear and quasi-linear equations of parabolic type. Translated from the Russian by S. Smith. Transl. Math. Monogr. (AMS) 23 (1968) xi+648.
  22. D. Lamberton and B. Lapeyre, Introduction au calcul stochastique appliqué à la finance. Ellipses, Paris, New York, London (1997) 176.
  23. Y. Saad, Iterative methods for sparse linear systems. First edition, SIAM (1996).
  24. I. Sapariuc, M.D. Marcozzi and J.E. Flaherty, A numerical analysis of variational valuation techniques for derivative securities, Appl. Math. Comput. 159 (2004) 171–198.
  25. S. Villeneuve and A. Zanette, Parabolic A.D.I. methods for pricing American options on two stocks, Math. Oper. Res. 27 (2002) 121–149.
  26. R. Zvan, P.A. Forsyth and K.R. Vetzal, A finite volume approach for contingent claims valuation, IMA J. Numer. Anal. 21 (2001) 703–731.

Recommended for you