Free access
Issue
ESAIM: M2AN
Volume 40, Number 2, March-April 2006
Page(s) 331 - 352
DOI http://dx.doi.org/10.1051/m2an:2006015
Published online 21 June 2006
  1. G. Allaire, S. Clerc and S. Kokh, A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys. 181 (2002) 577–616. [CrossRef] [MathSciNet]
  2. T. Barberon and P. Helluy, Finite volume simulations of cavitating flows. In Finite volumes for complex applications, III (Porquerolles, 2002), Lab. Anal. Topol. Probab. CNRS, Marseille (2002) 441–448 (electronic).
  3. T. Barberon and P. Helluy, Finite volume simulation of cavitating flows. Comput. Fluids 34 (2005) 832–858. [CrossRef]
  4. T. Barberon, P. Helluy and S. Rouy, Practical computation of axisymmetrical multifluid flows. Int. J. on Finite Volumes 1 (2003) 1–34. http://averoes.math.univ-paris13.fr/IJFV
  5. F. Bouchut, A reduced stability condition for nonlinear relaxation to conservation laws. J. Hyper. Diff. Eqns 1 (2004) 149–170. [CrossRef]
  6. Y. Brenier, Averaged multivalued solutions for scalar conservation laws. SIAM J. Numer. Anal. 21 (1984) 1013–1037. [CrossRef] [MathSciNet]
  7. Y. Brenier, Un algorithme rapide pour le calcul de transformées de Legendre-Fenchel discrètes. C.R. Acad. Sci. Paris Sér. I Math. 308 (1989) 587–589.
  8. H.B. Callen, Thermodynamics and an introduction to thermostatistics, second edition. Wiley and Sons (1985).
  9. F. Caro, Modélisation et simulation numérique des transitions de phase liquide-vapeur. Ph.D. thesis, École Polytechnique, Paris, France (November 2004).
  10. G. Chanteperdrix, P. Villedieu, J.-P. Vila, A compressible model for separated two-phase flows computations. In ASME Fluids Engineering Division Summer Meeting. ASME, Montreal, Canada (July 2002).
  11. G.Q. Chen, C. David Levermore and T.-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy. Comm. Pure Appl. Math. 47 (1994) 787–830. [CrossRef] [MathSciNet]
  12. J.-P. Croisille, Contribution à l'étude théorique et à l'approximation par éléments finis du système hyperbolique de la dynamique des gaz multidimensionnelle et multiespèces. Ph.D. thesis, Université Paris VI, France (1991).
  13. S. Dellacherie, Relaxation schemes for the multicomponent Euler system. ESAIM: M2AN 37 (2003) 909–936. [CrossRef] [EDP Sciences]
  14. L.C. Evans, Entropy and partial differential equations (2004). http://math.berkeley.edu/~evans/entropy.and.PDE.pdf
  15. A. Harten, P.D. Lax and B. Van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25 (1983) 35–61. [CrossRef] [MathSciNet]
  16. B.T. Hayes and P.G. LeFloch, Nonclassical shocks and kinetic relations: strictly hyperbolic systems. SIAM J. Math. Anal. 31 (2000) 941–991 (electronic). [CrossRef] [MathSciNet]
  17. J.-B. Hiriart-Urruty, Optimisation et analyse convexe. Mathématiques, Presses Universitaires de France, Paris (1998).
  18. J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of convex analysis. Grundlehren Text Editions, Springer-Verlag, Berlin (2001).
  19. S. Jaouen, Étude mathématique et numérique de stabilité pour des modèles hydrodynamiques avec transition de phase. Ph.D. thesis, Université Paris VI (November 2001).
  20. L. Landau and E. Lifchitz, Physique statistique. Physique théorique, Ellipses, Paris (1994).
  21. P.D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, in CBMS Regional Conf. Ser. In Appl. Math. 11, Philadelphia, SIAM (1972).
  22. P.G. LeFloch and C. Rohde, High-order schemes, entropy inequalities, and nonclassical shocks. SIAM J. Numer. Anal. 37 (2000) 2023–2060. [CrossRef] [MathSciNet]
  23. R.J. LeVeque and M. Pelanti, A class of approximate Riemann solvers and their relation to relaxation schemes. J. Comput. Phys. 172 (2001) 572–591. [CrossRef] [MathSciNet]
  24. T.P. Liu, The Riemann problem for general systems of conservation laws. J. Differ. Equations 56 (1975) 218–234.
  25. Y. Lucet, A fast computational algorithm for the Legendre-Fenchel transform. Comput. Optim. Appl. 6 (1996) 27–57. [MathSciNet]
  26. Y. Lucet, Faster than the fast Legendre transform, the linear-time Legendre transform. Numer. Algorithms 16 (1998) 171–185. [CrossRef]
  27. P.-A. Mazet and F. Bourdel, Multidimensional case of an entropic variational formulation of conservative hyperbolic systems. Rech. Aérospatiale 5 (1984) 369–378.
  28. R. Menikoff and B.J. Plohr, The Riemann problem for fluid flow of real materials. Rev. Mod. Phys. 61 (1989) 75–130. [NASA ADS] [CrossRef] [MathSciNet]
  29. B. Perthame, Boltzmann type schemes for gas dynamics and the entropy property. SIAM J. Numer. Anal. 27 (1990) 1405–1421. [CrossRef] [MathSciNet]
  30. R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150 (1999) 425–467. [CrossRef] [MathSciNet]

Recommended for you