Free access
Issue
ESAIM: M2AN
Volume 40, Number 2, March-April 2006
Page(s) 353 - 366
DOI http://dx.doi.org/10.1051/m2an:2006016
Published online 21 June 2006
  1. W. Allegretto and H. Xie, A non-local thermistor problem. Eur. J. Appl. Math. 6 (1995) 83–94.
  2. W. Allegreto, Y. Lin and A. Zhou, A box scheme for coupled systems resulting from microsensor thermistor problems. Dynam. Contin. Discret. S. 5 (1999) 209–223.
  3. W. Allegreto, Y. Lin and S. Ma, Existence and long time behaviour of solutions to obstacle thermistor equations. Discrete Contin. Dyn. S. 8 (2002) 757–780. [CrossRef]
  4. S.N. Antontsev and M. Chipot, The thermistor problem: existence, smoothness, uniqueness, blowup. SIAM J. Math. Anal. 25 (1994) 1128–1156. [CrossRef] [MathSciNet]
  5. A.R. Bahadir, Application of cubic B-spline finite element technique to the thermistor problem. Appl. Math. Comput. 149 (2004) 379–387. [CrossRef] [MathSciNet]
  6. A. Bermúdez, M.C. Muñiz and P. Quintela, Numerical solution of a three-dimensional thermoelectric problem taking place in an aluminum electrolytic cell. Comput. Method Appl. M. 106 (1993) 129–142. [CrossRef]
  7. O. Chau, J.R. Fernández, W. Han and M. Sofonea, A frictionless contact problem for elastic-viscoplastic materials with normal compliance and damage. Comput. Method Appl. M. 191 (2002) 5007–5026. [CrossRef]
  8. X. Chen, Existence and regularity of solutions of a nonlinear degenerate elliptic system arising from a thermistor problem. J. Partial Differential Equations 7 (1994) 19–34. [MathSciNet]
  9. P.G. Ciarlet, The finite element method for elliptic problems, in Handbook of Numerical Analysis, Vol. II, Part 1, P.G. Ciarlet and J.L. Lions Eds., North Holland (1991) 17–352.
  10. G. Cimatti, Remark on the existence and uniqueness for the thermistor problem under mixed boundary conditions. Quart. J. Mech. Appl. Math. 47 (1989) 117–121.
  11. G. Duvaut and J.L. Lions, Inequalities in Mechanics and Physics, Springer, New-York (1976).
  12. J.R. Fernández, K.L. Kuttler, M.C. Muñiz and M. Shillor, A model and simulations of the thermoviscoelastic thermistor. Eur. J. Appl. Math. (submitted).
  13. W. Han and M. Sofonea, Quasistatic contact problems in viscoelasticity and viscoplasticity, Americal Mathematical Society–International Press (2002).
  14. S.D. Howison, A note on the thermistor problem in two space dimension. Quart. J. Mech. Appl. Math. 47 (1989) 509–512.
  15. S.D. Howison, J. Rodrigues and M. Shillor, Stationary solutions to the thermistor problem. J. Math. Anal. Appl. 174 (1993) 573–588. [CrossRef] [MathSciNet]
  16. S. Kutluay, A.R. Bahadir and A. Ozdeć, A variety of finite difference methods to the thermistor with a new modified electrical conductivity. Appl. Math. Comput. 106 (1999) 205–213. [CrossRef] [MathSciNet]
  17. S. Kutluay, A.R. Bahadir and A. Ozdeć, Various methods to the thermistor problem with a bulk electrical conductivity. Int. J. Numer. Method. Engrg. 45 (1999) 1–12. [CrossRef]
  18. S. Kutluay and E. Esen, A B-spline finite element method for the thermistor problem with the modified electrical conductivity. Appl. Math. Comput. 156 (2004) 621–632. [CrossRef] [MathSciNet]
  19. S. Kutluay and A.S. Wood, Numerical solutions of the thermistor problem with a ramp electrical conductivity. Appl. Math. Comput. 148 (2004) 145–162. [CrossRef] [MathSciNet]
  20. K.L. Kuttler, M. Shillor and J.R. Fernández, Existence for the thermoviscoelastic thermistor problem. Differential Equations Dynam. Systems (to appear).
  21. H. Xie and W. Allegretto, Formula solutions of a class of nonlinear degenerate elliptic systems arising in the thermistor problem. SIAM J. Math. Anal. 22 (1991) 1491–1499. [CrossRef] [MathSciNet]
  22. X. Xu, The thermistor problem with conductivity vanishing for large temperature. P. Roy. Soc. Edinb. A 124 (1994) 1–21.
  23. X. Xu, On the existence of bounded temperature in the thermistor problem with degeneracy. Nonlinear Anal. 42 (2000) 199–213. [CrossRef] [MathSciNet]
  24. X. Xu, On the effects of thermal degeneracy in the thermistor problem. SIAM J. Math. Anal. 35 (4) (2003) 1081–1098.
  25. X. Xu, Local regularity theorems for the stationary thermistor problem. P. Roy. Soc. Edinb. A 134 (2004) 773–782. [CrossRef]
  26. S. Zhou and D.R. Westbrook, Numerical solutions of the thermistor equations. J. Comput. Appl. Math. 79 (1997) 101–118. [CrossRef] [MathSciNet]

Recommended for you