Free access
Issue
ESAIM: M2AN
Volume 40, Number 3, May-June 2006
Page(s) 501 - 527
DOI http://dx.doi.org/10.1051/m2an:2006024
Published online 22 July 2006
  1. M. Bern, D. Eppstein and J. Gilbert, Provably good mesh generation. J. Comput. Syst. Sci. 48 (1994) 384–409. [CrossRef] [MathSciNet]
  2. C. Bernardi and V. Girault, A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35 (1998) 1893–1916. [CrossRef] [MathSciNet]
  3. F. Brezzi and M. Fortin, A minimal stabilisation procedure for mixed finite element methods. Numer. Math. 89 (2001) 457–491. [CrossRef] [MathSciNet]
  4. F. Brezzi and J. Pitkäranta, On the stabilization of finite element approximations of the Stokes equations. In Efficient Solution of Elliptic Systems, W. Hackbusch Ed., Notes Num. Fluid Mech. 10 (1984) 11–19.
  5. Ph. Clément, Approximation by finite element functions using local regularization. Rev. Fr. Automat. Infor. R-2 (1975) 77–84.
  6. C.R. Dohrmann and P.B. Bochev, A stabilized finite element method for the Stokes problem based on polynomial pressure projections. Int. J. Numer. Meth. Fl. 46 (2004) 183–201. [CrossRef]
  7. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. Volume VII of Handbook of Numerical Analysis, North Holland (2000) 713–1020.
  8. R. Eymard, R. Herbin and J.C. Latché, Convergence analysis of a colocated finite volume scheme for the incompressible Navier-Stokes equations on general 2D or 3D meshes, SIAM J. Numer. Anal. (2006) (in press).
  9. R. Eymard, R. Herbin and J.C. Latché, On colocated clustered finite volume schemes for incompressible flow problems (2006) (in preparation).
  10. R. Eymard, R. Herbin, J.C. Latché and B. Piar, A colocated clustered finite volume schemes based on simplices for the 2D Stokes problem (2006) (in preparation).
  11. J.H. Ferziger and M. Perić, Computational Methods for Fluid Dynamics. Springer, third edition (2002).
  12. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer Series in Computational Mathematics. Springer-Verlag 5 (1986).
  13. F.H. Harlow and J.E. Welsh, Numerical calculation of time dependent viscous incompressible flow with free surface. Phys. Fluids 8 (1965) 2182–2189. [NASA ADS] [CrossRef]
  14. N. Kechkar and D. Silvester, Analysis of locally stabilized mixed finite element methods for the Stokes problem. Math. Comput. 58 (1992) 1–10. [CrossRef]
  15. J. Nečas, Equations aux dérivées partielles. Presses de l'Université de Montréal (1965).
  16. R.A. Nicolaides, Analysis and convergence of the MAC scheme I. The linear problem. SIAM J. Numer. Anal. 29 (1992) 1579–1591. [CrossRef] [MathSciNet]
  17. R.A. Nicolaides and X. Wu, Analysis and convergence of the MAC scheme II. Navier-Stokes equations. Math. Comput. 65 (1996) 29–44. [CrossRef]
  18. G. Papageorgakopoulos, G. Arampatzis and N.C. Markatos, Enhancement of the momentum interpolation method on non-staggered grids. Int. J. Numer. Meth. Fl. 33 (2000) 1–22. [CrossRef]
  19. M. Perić, R. Kessler and G. Scheurer, Comparison of finite-volume numerical methods with staggered and colocated grids. Comput. Fluids 16 (1988) 389–403. [CrossRef]
  20. B. Piar, PELICANS: Un outil d'implémentation de solveurs d'équations aux dérivées partielles. Note Technique 2004/33, IRSN, 2004.
  21. C.M. Rhie and W.L. Chow, Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA Journal 21 (1983) 1525–1532. [NASA ADS] [CrossRef]
  22. D.J. Silvester and N. Kechkar, Stabilised bilinear-constant velocity-pressure finite elements for the conjugate gradient solution of the Stokes problem. Comput. Method. Appl. M. 79 (1990) 71–86. [CrossRef]
  23. R. Verfürth, Error estimates for some quasi-interpolation operators. ESAIM: M2AN 33 (1999) 695–713. [CrossRef] [EDP Sciences]
  24. R. Verfürth, A note on polynomial approximation in Sobolev spaces. ESAIM: M2AN 33 (1999) 715–719. [CrossRef] [EDP Sciences]

Recommended for you