Free access
Issue
ESAIM: M2AN
Volume 40, Number 4, July-August 2006
Page(s) 623 - 652
DOI http://dx.doi.org/10.1051/m2an:2006027
Published online 15 November 2006
  1. Y. Achdou, C. Sabot and N. Tchou, A multiscale numerical method for Poisson problems in some ramified domains with a fractal boundary. SIAM Multiscale Model. Simul. (2006) (accepted for publication).
  2. Y. Achdou, C. Sabot and N. Tchou, Transparent boundary conditions for Helmholtz equation in some ramified domains with a fractal boundary. J. Comput. Phys. (2006) (in press).
  3. R.A. Adams, Sobolev spaces. Academic Press, New York-London (1975). Pure Appl. Math. 65.
  4. H. Brezis, Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise. Théorie et applications. Masson, Paris, 1983.
  5. M. Felici, Physique du transport diffusif de l'oxygène dans le poumon humain. Ph.D. thesis, École Polytechnique (2003).
  6. M. Gibbons, A. Raj and R.S. Strichartz, The finite element method on the Sierpinski gasket. Constr. Approx. 17 (2001) 561–588. [CrossRef] [MathSciNet]
  7. P. Grisvard, Elliptic problems in nonsmooth domains. Monographs and Studies in Mathematics 24, Pitman (Advanced Publishing Program), Boston, MA (1985).
  8. J.E. Hutchinson, Fractals and self-similarity. Indiana Univ. Math. J. 30 (1981) 713–747. [CrossRef] [MathSciNet]
  9. P.W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147 (1981) 71–88. [CrossRef] [MathSciNet]
  10. A. Jonsson and H. Wallin, Function spaces on subsets of Rn. Math. Rep. 2 (1984) xiv+221.
  11. J.B. Keller and D. Givoli, Exact nonreflecting boundary conditions. J. Comput. Phys. 82 (1989) 172–192. [CrossRef] [MathSciNet]
  12. M.R. Lancia, A transmission problem with a fractal interface. Z. Anal. Anwendungen 21 (2002) 113–133. [MathSciNet]
  13. M.R. Lancia, Second order transmission problems across a fractal surface. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 27 (2003) 191–213. [MathSciNet]
  14. B.B. Mandelbrodt, The fractal geometry of nature. Freeman and Co (1982).
  15. B. Mauroy, M. Filoche, J.S. Andrade and B. Sapoval, Interplay between flow distribution and geometry in an airway tree. Phys. Rev. Lett. 90 (2003).
  16. B. Mauroy, M. Filoche, E.R. Weibel and B. Sapoval, The optimal bronchial tree is dangerous. Nature 427 (2004) 633–636. [CrossRef] [PubMed]
  17. V.G. Maz'ja, Sobolev spaces. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin (1985). Translated from the Russian by T.O. Shaposhnikova.
  18. U. Mosco, Energy functionals on certain fractal structures. J. Convex Anal. 9 (2002) 581–600. [MathSciNet]
  19. U. Mosco and M.A. Vivaldi, Variational problems with fractal layers. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 27 (2003) 237–251. [MathSciNet]
  20. R. Oberlin, B. Street and R.S. Strichartz, Sampling on the Sierpinski gasket. Experiment. Math. 12 (2003) 403–418. [MathSciNet]
  21. J. Rauch, Partial differential equations. Graduate Texts in Mathematics 128, Springer-Verlag, New York (1991).
  22. C. Sabot, Spectral properties of self-similar lattices and iteration of rational maps. Mém. Soc. Math. Fr. (N.S.) 92 (2003) vi+104.
  23. C. Sabot, Electrical networks, symplectic reductions, and application to the renormalization map of self-similar lattices, in Fractal geometry and applications: a jubilee of Benoît Mandelbrot. Part 1, Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 72 (2004) 155–205.
  24. B. Sapoval and T. Gobron, Vibration of strongly irregular fractal resonators. Phys. Rev. E 47 (1993).
  25. B. Sapoval, T. Gobron and A. Margolina, Vibration of fractal drums. Phys. Rev. Lett. 67 (1991).

Recommended for you