Free access
Issue
ESAIM: M2AN
Volume 40, Number 5, September-October 2006
Page(s) 843 - 869
DOI http://dx.doi.org/10.1051/m2an:2006036
Published online 16 January 2007
  1. D.N. Arnold, F. Brezzi and J. Douglas, PEERS: A new mixed finite element method for plane elasticity. Japan J. Appl. Math. 1 (1984) 347–367. [CrossRef] [MathSciNet]
  2. D. Braess, O. Klaas, R. Niekamp, E. Stein and F. Wobschal, Error indicators for mixed finite elements in 2-dimensional linear elasticity. Comput. Method. Appl. M. 127 (1995) 345–356. [CrossRef] [MathSciNet]
  3. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag (1991).
  4. C. Carstensen, A posteriori error estimate for the mixed finite element method. Math. Comput. 66 (1997) 465–476. [CrossRef] [MathSciNet]
  5. C. Carstensen and G. Dolzmann, A posteriori error estimates for mixed FEM in elasticity. Numer. Math. 81 (1998) 187–209. [CrossRef] [MathSciNet]
  6. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, New York, Oxford (1978).
  7. P. Clément, Approximation by finite element functions using local regularisation. RAIRO Anal. Numér. 9 (1975) 77–84.
  8. J. Douglas and J. Wan, An absolutely stabilized finite element method for the Stokes problem. Math. Comput. 52 (1989) 495–508. [CrossRef]
  9. G.N. Gatica, A note on the efficiency of residual-based a posteriori error estimators for some mixed finite element methods. Electronic Trans. Numer. Anal. 17 (2004) 218–233.
  10. G.N. Gatica, Analysis of a new augmented mixed finite element method for linear elasticity allowing Formula approximations. ESAIM: M2AN 40 (2006) 1–28. [CrossRef] [EDP Sciences]
  11. A. Masud and T.J.R. Hughes, A stabilized mixed finite element method for Darcy flow. Comput. Method. Appl. M. 191 (2002) 4341–4370. [CrossRef] [MathSciNet]
  12. J.E. Roberts and J.-M. Thomas, Mixed and Hybrid Methods, in Handbook of Numerical Analysis II, Finite Element Methods (Part 1) P.G. Ciarlet and J.L. Lions Eds., North-Holland, Amsterdam (1991).
  13. R. Verfürth, A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math. 50 (1994) 67–83. [CrossRef] [MathSciNet]
  14. R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner (Chichester) (1996).

Recommended for you