Free access
Issue
ESAIM: M2AN
Volume 40, Number 5, September-October 2006
Page(s) 897 - 921
DOI http://dx.doi.org/10.1051/m2an:2006038
Published online 16 January 2007
  1. M. Amara, D. Capatina-Papaghiuc, E. Chacón-Vera and D. Trujillo, Vorticity-velocity-pressure formulation for Navier-Stokes equations. Comput. Vis. Sci. 6 (2004) 47–52. [CrossRef] [MathSciNet]
  2. C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional nonsmooth domains. Math. Method. Appl. Sci. 21 (1998) 823–864. [CrossRef] [MathSciNet]
  3. F. Ben Belgacem and C. Bernardi, Spectral element discretization of the Maxwell equations. Math. Comput. 68 (1999) 1497–1520. [CrossRef]
  4. C. Bernardi and N. Chorfi, Spectral discretization of the vorticity, velocity and pressure formulation of the Stokes problem. SIAM J. Numer. Anal. 44 (2006) 826–850. bibitemBMx C. Bernardi and Y. Maday, Spectral Methods, in the Handbook of Numerical Analysis V, P.G. Ciarlet and J.-L. Lions Eds., North-Holland (1997) 209–485. [CrossRef] [MathSciNet]
  5. C. Bernardi, M. Dauge and Y. Maday, Polynomials in the Sobolev world. Internal Report, Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie (2003).
  6. C. Bernardi, V. Girault and P.-A. Raviart, Incompressible Viscous Fluids and their Finite Element Discretizations, in preparation.
  7. J. Boland and R. Nicolaides, Stability of finite elements under divergence constraints. SIAM J. Numer. Anal. 20 (1983) 722–731. [CrossRef] [MathSciNet]
  8. A. Buffa and P. Ciarlet, Jr., On traces for functional spaces related to Maxwell's equations. Part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Method. Appl. Sci. 24 (2001) 31–48. [CrossRef] [MathSciNet]
  9. A. Buffa, M. Costabel and M. Dauge, Algebraic convergence for anisotropic edge elements in polyhedral domains. Numer. Math. 101 (2005) 29–65. [CrossRef] [MathSciNet]
  10. M. Costabel and M. Dauge, Espaces fonctionnels Maxwell: Les gentils, les méchants et les singularités, Web publication (1998) http://perso.univ-rennes1.fr/monique.dauge.
  11. M. Costabel and M. Dauge, Computation of resonance frequencies for Maxwell equations in non smooth domains, in Topics in Computational Wave Propagation, M. Ainsworth, P. Davies, D. Duncan, P. Martin and B. Rynne Eds., Springer (2004) 125–161.
  12. F. Dubois, Vorticity-velocity-pressure formulation for the Stokes problem. Math. Meth. Appl. Sci. 25 (2002) 1091–1119. [CrossRef]
  13. F. Dubois, M. Salaün and S. Salmon, Vorticity-velocity-pressure and stream function-vorticity formulations for the Stokes problem. J. Math. Pure. Appl. 82 (2003) 1395–1451. [CrossRef] [MathSciNet]
  14. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag (1986).
  15. J.-C. Nédélec, Mixed finite elements in Formula . Numer. Math. 35 (1980) 315–341. [CrossRef] [MathSciNet]
  16. P.-A. Raviart and J.-M. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of Finite Element Methods, I. Galligani and E. Magenes Eds., Lect. Notes Math. 606, Springer-Verlag (1977) 292–315.
  17. S. Salmon, Développement numérique de la formulation tourbillon-vitesse-pression pour le problème de Stokes. Ph.D. thesis, Université Pierre et Marie Curie, Paris (1999).

Recommended for you