Free access
Issue
ESAIM: M2AN
Volume 40, Number 6, November-December 2006
Page(s) 1101 - 1125
DOI http://dx.doi.org/10.1051/m2an:2007003
Published online 15 February 2007
  1. G. Bayada, M. Chambat, B. Cid and C. Vazquez, On the existence of solution for a non-homogeneous Stokes-rod coupled problem. Nonlinear Anal. Theory Methods Appl., 59 (2004) 1–19.
  2. H. Beirao da Veiga, On the existence of strong solution to a coupled fluid structure evolution problem. J. Math. Fluid Mech. 6 (2004) 21–52. [CrossRef] [MathSciNet]
  3. P. Causin, J.F. Gerbeau, F. Nobile, Added-mass effect in the design of partitioned algorithms for fluid-structure problems, Comput. Methods Appl. Mech. Engrg. 194 (2005) 4506–4527.
  4. A. Chambolle, B. Desjardins, M.J. Esteban, C. Grandmont, Existence of weak solutions for an unsteady fluid-plate interaction problem. J. Math. Fluid Mech. 7 (2005) 368–404. [CrossRef] [MathSciNet]
  5. R. Dautray and J.L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Vol. 7, 9, Masson (1988).
  6. J.E. Dennis, Jr., and R.B. Schnabel, Numerical methods for unconstrained optimization and nonlinear equations. Classics in Applied Mathematics, 16, Society for Industrial and Applied Mathematics, Philadelphia, PA (1996).
  7. S. Deparis, Numerical Analysis of Axisymmetric Flows and Methods for Fluid-Structure Interaction Arising in Blood Flow Simulation, Ph.D. thesis, École Polytechnique Fédérale de Lausanne, Switzerland (2004).
  8. S. Deparis, M.A. Fernandez and L. Formaggia, Acceleration of a fixed point algorithm for fluid-structure interaction using transpiration conditions. ESAIM: M2AN 37 (2003) 601–616. [CrossRef] [EDP Sciences]
  9. B. Desjardins, M. Esteban, C. Grandmont and P. Le Tallec, Weak solutions for a fluid-elastic structure interaction model. Rev. Mat. Complut. 14 (2001) 523–538. [MathSciNet]
  10. G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique. Dunod, Paris (1972).
  11. C. Farhat and M. Lesoinne, Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems, Comput. Methods Appl. Mech. Engrg. 182 (2000) 499–515.
  12. M.A. Fernandez and M. Moubachir, A Newton method using exact jacobians for solving fluid-structure coupling. Comput. Struct. 83 (2005) 127–142. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  13. L. Formaggia, J.F. Gerbeau, F. Nobile and A. Quarteroni, On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Engrg. 191 (2001), 561–582.
  14. J.F. Gerbeau and M. Vidrascu, A quasi-Newton algorithm on a reduced model for fluid - structure interaction problems in blood flows. ESAIM: M2AN 37 (2003) 663–680. [CrossRef] [EDP Sciences]
  15. C. Grandmont, Existence for a three-dimensional steady state fluid-structure interaction problem. J. Math. Fluid Mech. 4 (2002) 76–94. [CrossRef] [MathSciNet]
  16. C. Grandmont and Y. Maday, Existence for an unsteady fluid-structure interaction problem. ESAIM: M2AN 34 (2000) 609–636. [CrossRef] [EDP Sciences]
  17. J.-L. Guermond and L. Quartapelle, On the approximation of the unsteady Navier-Stokes equations by finite element projection methods. Numer. Math. 80 (1998) 207–238. [CrossRef] [MathSciNet]
  18. F. Hecht and O. Pironneau, A finite element software for PDE: freefem++, http://www.freefem.org.
  19. C.T. Kelley, Solving nonlinear equations with Newton's method. Fundamentals of Algorithms. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2003).
  20. H.P. Langtangen, Computational Partial Differential Equations: numerical methods and Diffpack programming. Springer, Berlin (1999).
  21. P. Le Tallec, Introduction à la dynamique des structures, Cours École Polytechnique, Ellipses (2000).
  22. P. Le Tallec and J. Mouro, Fluid-structure interaction with large structural displacements. Comput. Methods Appl. Mech. Engrg. 190 (2001) 3039–3067. [CrossRef]
  23. Y. Maday, B. Maury and P. Metier, Interaction de fluides potentiels avec une membrane élastique, in ESAIM Proc., Soc. Math. Appl. Indust., Paris 10 (1999) 23–33.
  24. C. Murea, The BFGS algorithm for a nonlinear least squares problem arising from blood flow in arteries. Comput. Math. Appl. 49 (2005) 171–186. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  25. C. Murea and C. Vazquez, Sensitivity and approximation of the coupled fluid-structure equations by virtual control method. Appl. Math. Optim. 52 (2005) 357–371.
  26. F. Nobile, Numerical approximation of fluid-structure interaction problems with application to haemodynamics. Ph.D. thesis, EPFL, Lausanne (2001).
  27. O. Pironneau, Conditions aux limites sur la pression pour les équations de Stokes et Navier-Stokes. C. R. Acad. Sc. Paris, 303 (1986) 403–406.
  28. A. Quarteroni and L. Formaggia, Mathematical Modelling and Numerical Simulation of the Cardiovascular System. Chapter in Modelling of Living Systems, N. Ayache Ed., Handbook of Numerical Analysis Series, Vol. XII, P.G. Ciarlet Ed., Elsevier, Amsterdam (2004).
  29. A. Quarteroni, M. Tuveri and A. Veneziani, Computational vascular fluid dynamics: problems, models and methods. Comput. Visual. Sci. 2 (2000) 163–197. [CrossRef]
  30. J. Steindorf and H.G. Matthies, Partioned but strongly coupled iteration schemes for nonlinear fluid-structure interaction. Comput. Struct. 80 (2002) 1991–1999. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]

Recommended for you