Free access
Issue
ESAIM: M2AN
Volume 41, Number 1, January-February 2007
Page(s) 1 - 20
DOI http://dx.doi.org/10.1051/m2an:2007005
Published online 26 April 2007
  1. M. Ainsworth and P. Coggins, A uniformly stable family of mixed hp-finite elements with continuous pressures for incompressible flow. IMA J. Numer. Anal. 22 (2002) 307–327. [CrossRef] [MathSciNet]
  2. I. Babuška and M. Suri, The p and h - p versions of the finite element method, basic principles and properties. SIAM Rev. 36 (1994) 578–632. [CrossRef] [MathSciNet]
  3. C. Bernardi and Y. Maday. Approximations spectrales de problèmes aux limites elliptiques. (Spectral approximation for elliptic boundary value problems). Mathématiques & Applications, Paris, Springer-Verlag 10 (1992).
  4. C. Bernardi and Y. Maday, Uniform inf-sup conditions for the spectral discretization of the Stokes problem. Math. Models Methods Appl. Sci. 9 (1999) 395–414. [CrossRef] [MathSciNet]
  5. D. Boffi and L. Gastaldi, On the quadrilateral Q2-P1 element for the Stokes problem. Int. J. Numer. Methods Fluids 39 (2002) 1001–1011. [CrossRef]
  6. J.M. Boland and R.A. Nicolaides, Stability of finite elements under divergence constraints. SIAM J. Numer. Anal. 20 (1983) 722–731. [CrossRef] [MathSciNet]
  7. S. Bönisch, V. Heuveline and P. Wittwer, Adaptive boundary conditions for exterior flow problems. J. Math. Fluid Mech. 7 (2005) 85–107. [CrossRef] [MathSciNet]
  8. F. Brezzi and R.S. Falk, Stability of higher-order Hood-Taylor methods. SIAM J. Numer. Anal. 28 (1991) 581–590. [CrossRef] [MathSciNet]
  9. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, Springer-Verlag 15 (1991).
  10. L. Chilton and M. Suri, On the construction of stable curvilinear p version elements for mixed formulations of elasticity and Stokes flow. Numer. Math. 86 (2000) 29–48. [CrossRef] [MathSciNet]
  11. P.G. Ciarlet, The finite element method for elliptic problems. Studies in Mathematics and its Applications 4, Amsterdam - New York - Oxford: North-Holland Publishing Company (1978).
  12. M. Fortin, An analysis of the convergence of mixed finite element methods. RAIRO Anal. Numer. 11 (1977) 341–354. [MathSciNet]
  13. V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations. Springer-Verlag, Berlin-Heidelberg-New York (1986).
  14. V. Heuveline and M. Hinze, Adjoint-based adaptive time-stepping for partial differential equations using proper orthogonal decomposition. Technical report, University Heidelberg, SFB 359 (2004).
  15. V. Heuveline and R. Rannacher, A posteriori error control for finite element approximations of elliptic eigenvalue problems. Adv. Comput. Math. 15 (2001) 107–138. [CrossRef] [MathSciNet]
  16. V. Heuveline and R. Rannacher, Duality-based adaptivity in the hp-finite element method. J. Numer. Math. 11 (2003) 95–113. [CrossRef] [MathSciNet]
  17. V. Heuveline and F. Schieweck, An interpolation operator for H1 functions on general quadrilateral and hexahedral meshes with hanging nodes. Technical report, University Heidelberg, SFB 359 (2004).
  18. G. Matthies, Mapped finite elements on hexahedra. Necessary and sufficient conditions for optimal interpolation errors. Numer. Algorithms 27 (2001) 317–327. [CrossRef] [MathSciNet]
  19. G. Matthies and L. Tobiska, The inf-sup condition for the mapped Qk-Formula element in arbitrary space dimensions. Computing 69 (2002) 119–139. [CrossRef] [MathSciNet]
  20. S. Schötzau, C. Schwab and R. Stenberg, Mixed hp-fem on anisotropic meshes. II: Hanging nodes and tensor products of boundary layer meshes. Numer. Math. 83 (1999) 667–697. [MathSciNet]
  21. Ch. Schwab, p- and hp-finite element methods. Theory and applications in solid and fluid mechanics. Numerical Mathematics and Scientific Computation, Oxford: Clarendon Press (1998).
  22. L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483–493. [CrossRef] [MathSciNet]
  23. R. Stenberg, Error analysis of some finite element methods for the Stokes problem. Math. Comp. 54 (1990) 495–508. [CrossRef] [MathSciNet]
  24. R. Stenberg and M. Suri, Mixed hp finite element methods for problems in elasticity and Stokes flow. Numer. Math. 72 (1996) 367–389. [CrossRef] [MathSciNet]
  25. L. Stupelis, Navier-Stokes equations in irregular domains. Mathematics and its Applications 326, Dordrecht: Kluwer Academic Publishers (1995).

Recommended for you