 F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and WellBalanced Schemes for Sources. Birkhäuser (2004).
 A. Bressan, H.K. Jenssen and P. Baiti, An instability of the Godunov Scheme. arXiv:math.AP/0502125 v2 (2005).
 M.J. Castro, J. Macías and C. Parés, A QScheme for a class of systems of coupled conservation laws with source term. Application to a twolayer 1D shallow water system. Math. Mod. Num. Anal. 35 (2001) 107–127. [CrossRef] [EDP Sciences]
 F. Coquel, D. Diehl, C. Merkle and C. Rohde, Sharp and diffuse interface methods for phase transition problems in liquidvapour flows, in Numerical Methods for Hyperbolic and Kinetic Problems, IRMA Lectures in Mathematics and Theoretical Physics, Proceedings of CEMRACS 2003.
 G. Dal Maso, P.G. LeFloch and F. Murat, Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74 (1995) 483–548. [MathSciNet]
 F. De Vuyst, Schémas nonconservatifs et schémas cinétiques pour la simulation numérique d'écoulements hypersoniques non visqueux en déséquilibre thermochimique. Ph.D. thesis, University of Paris VI, France (1994).
 E. Godlewski and P.A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer (1996).
 L. Gosse, A wellbalanced fluxvector splitting scheme designed for hyperbolic systems of conservation laws with source terms. Comput. Math. Appl. 39 (2000) 135–159. [CrossRef] [MathSciNet]
 L. Gosse, A wellbalanced scheme using nonconservative products designed for hyperbolic systems of conservation laws with source terms. Math. Models Methods Appl. Sci. 11 (2001) 339–365. [CrossRef] [MathSciNet]
 J.M. Greenberg and A.Y. LeRoux, A well balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33 (1996) 1–16. [CrossRef] [MathSciNet]
 J.M. Greenberg, A.Y. LeRoux, R. Baraille and A. Noussair, Analysis and approximation of conservation laws with source terms. SIAM J. Numer. Anal. 34 (1997) 1980–2007. [CrossRef] [MathSciNet]
 A. Harten, P.D. Lax and B. Van Leer, On upstream differencing and Godunovtype schemes for hyperbolic conservation laws. SIAM Rev. 25 (1983) 35–61. [CrossRef] [MathSciNet]
 T. Hou and P.G. LeFloch, Why nonconservative schemes converge to wrong solutions: error analysis. Math. Comp. 62 (1994) 497–530. [CrossRef] [MathSciNet]
 E. Isaacson and B. Temple, Convergence of the 2 x 2 Godunov method for a general resonant nonlinear balance law. SIAM J. Appl. Math. 55 (1995) 625–640. [CrossRef] [MathSciNet]
 P.D. Lax and B. Wendroff, Systems of conservation laws. Comm. Pure Appl. Math. 13 (1960) 217–237. [CrossRef] [MathSciNet]
 P.G. LeFloch, Shock waves for nonlinear hyperbolic systems in nonconservative form. Institute Math. Appl., Minneapolis, Preprint 593 (1989).
 P.G. LeFloch, Graph solutions of nonlinear hyperbolic systems. J. Hyper. Differ. Equa. 2 (2004) 643–689.
 P.G. LeFloch and A.E. Tzavaras, Representation of weak limits and definition of nonconservative products. SIAM J. Math. Anal. 30 (1999) 1309–1342. [CrossRef] [MathSciNet]
 R.J. LeVeque, Balancing source terms and flux gradients in highresolution Godunov methods: the quasisteady wavepropagation algorithm. J. Comp. Phys. 146 (1998) 346–365. [NASA ADS] [CrossRef] [MathSciNet]
 C. Parés, Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44 (2006) 300–321. [CrossRef] [MathSciNet]
 C. Parés and M. Castro, On the wellbalance property of Roe's method for nonconservative hyperbolic systems. Applications to shallow water systems. Math. Mod. Num. Anal. 38 (2004) 821–852. [CrossRef] [EDP Sciences]
 A.I. Volpert, The space BV and quasilinear equations. Math. USSR Sbornik 73 (1967) 225–267. [CrossRef]
Free access
Issue 
ESAIM: M2AN
Volume 41, Number 1, JanuaryFebruary 2007



Page(s)  169  185  
DOI  http://dx.doi.org/10.1051/m2an:2007011  
Published online  26 April 2007 