Free access
Issue
ESAIM: M2AN
Volume 41, Number 1, January-February 2007
Page(s) 129 - 145
DOI http://dx.doi.org/10.1051/m2an:2007013
Published online 26 April 2007
  1. A. Arnold and F. Brezzi, Locking free finite element methods for shells. Math. Comp. 66 (1997) 1–14. [CrossRef] [MathSciNet]
  2. K.J. Bathe and D. Chapelle, The Finite Element Analysis of Shells - fundamentals. Computational Fluid and Solid Mechanics, Springer Verlag, New York (2003).
  3. J. Bathe, D. Chapelle and A. Iosilevich, An inf-sup test for shell finite elements. Comput. Structures 75 (2000) 439–456. [CrossRef] [MathSciNet]
  4. F. Ben Belgacem and Y. Maday, The mortar element method for three dimensional finite element. RAIRO Modél. Math. Anal. Numér. 31 (1997) 289–303. [MathSciNet]
  5. A. Blouza and H. Le Dret, Existence et unicité pour le modèle de Koiter pour une coque peu régulière. C.R. Acad. Sci. Paris 319 (1994) 1127–1132.
  6. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991).
  7. F. Brezzi and D. Marini, Error estimates for the three-field formulation with bubble stabilization. Math. Comp. 70 (2000) 911–934. [CrossRef] [MathSciNet]
  8. M. Bernadou and P.G. Ciarlet, Sur l'ellipticité du modèle linéaire de coque de Koiter. Lecture Notes in Economics and Mathematical Systems, Springer Verlag, Berlin (1976).
  9. D. Chapelle and A. Ferent, Modeling of the inclusion of a reinforcing sheet within a 3D medium. Math. Models Methods Appl. Sci. 13 (2003) 573–595. [CrossRef] [MathSciNet]
  10. D. Chapelle and R. Stenberg, Stabilized finite element formulations for shells in a bending dominated state. SIAM J. Numer. Anal. 36 (1999) 32–73. [CrossRef] [MathSciNet]
  11. A. Diaz and D. Barthes-Biesel, Entrance of a bioartificial capsule in a pore. Comput. Modeling Engineering Sci. 3 (2002) 321–338.
  12. B. Flemisch, J.M. Melenk and B. Wohlmuth, Mortar methods with curved interfaces. Technical report, Max Planck Institute (2004).
  13. P. Hauret, Méthodes numériques pour la dynamique des structures non-linéaires incompressibles à deux échelles. Ph.D. thesis, École polytechnique, France (2004).
  14. P. Le Tallec and S. Mani, Numerical analysis of a linearized fluid-structure interaction problem. Numer. Math. 87 (2000) 317–354. [CrossRef] [MathSciNet]
  15. M.A. Puso, A 3D mortar method for solid mechanic. Int. J. Num. Meth. Engr. 59 (2004) 315–336. [CrossRef]
  16. L.R. Scott and S. Zhang, Finite element interpolation of non smooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483–493. [CrossRef] [MathSciNet]
  17. R. Stenberg, A technique for analysing finite element methods for viscous incompressible flow. Int. J. Num. Meth. Fluids 11 (1990) 935–948. [CrossRef]
  18. B.I. Wohlmuth, Discretization methods and iterative solvers based on domain decomposition. Springer Verlag, New York (2001).
  19. G. Yang, M.C. Delfour and M. Fortin, Error Analysis of mixed finite element for cylindrical shells, Centre de Recherche Mathématiques, Proceedings and Lecture Notes 21 (1999).

Recommended for you