Free access
Issue
ESAIM: M2AN
Volume 41, Number 2, March-April 2007
Special issue on Molecular Modelling
Page(s) 189 - 213
DOI http://dx.doi.org/10.1051/m2an:2007017
Published online 16 June 2007
  1. A. Alfonsi, On the discretization schemes for the CIR (and Bessel squared) processes. Monte Carlo Methods Appl. 11 (2005) 355–384. [CrossRef] [MathSciNet]
  2. R. Assaraf, M. Caffarel and A. Khelif, Diffusion Monte Carlo with a fixed number of walkers. Phys. Rev. E 61 (2000) 4566–4575. [CrossRef]
  3. E. Cancès, M. Defranceschi, W. Kutzelnigg, C. Le Bris and Y. Maday, Computational Quantum Chemistry: a Primer, in Handbook of Numerical Analysis, Special volume, Computational Chemistry, volume X, Ph.G. Ciarlet and C. Le Bris Eds., North-Holland (2003) 3–270.
  4. E. Cancès, B. Jourdain and T. Lelièvre, Quantum Monte Carlo simulations of fermions. A mathematical analysis of the fixed-node approximation. Math. Mod. Methods Appl. Sci. 16 (2006) 1403–1440. [CrossRef]
  5. O. Cappé, R. Douc and E. Moulines, Comparison of Resampling Schemes for Particle Filtering, in 4th International Symposium on Image and Signal Processing and Analysis (ISPA), Zagreb, Croatia (2005).
  6. N. Chopin, Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. Ann. Statist. 32 (2004) 2385–2411. [CrossRef] [MathSciNet]
  7. P. Del Moral, Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications. Springer-Verlag (2004).
  8. P. Del Moral and A. Doucet, Particle motions in absorbing medium with hard and soft obstacles. Stochastic Anal. Appl. 22 (2004) 1175–1207. [CrossRef] [MathSciNet]
  9. P. Del Moral and L. Miclo, Branching and Interacting Particle Systems. Approximation of Feynman-Kac Formulae with Applications to Non-Linear Filtering, in Séminaire de Probabilités XXXIV, Lecture Notes in Mathematics 1729, Springer-Verlag (2000) 1–145.
  10. P. Del Moral and L. Miclo, Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman-Kac semigroups. ESAIM: PS 7 (2003) 171–208. [CrossRef] [EDP Sciences]
  11. P. Glasserman, Monte Carlo methods in financial engineering. Springer-Verlag (2004).
  12. J.H. Hetherington, Observations on the statistical iteration of matrices. Phys. Rev. A 30 (1984) 2713–2719. [CrossRef] [MathSciNet]
  13. P.J. Reynolds, D.M. Ceperley, B.J. Alder and W.A. Lester, Fixed-node quantum Monte Carlo for molecules. J. Chem. Phys. 77 (1982) 5593–5603. [CrossRef]
  14. M. Rousset, On the control of an interacting particle approximation of Schrödinger groundstates. SIAM J. Math. Anal. 38 (2006) 824–844. [CrossRef] [MathSciNet]
  15. S. Sorella, Green Function Monte Carlo with Stochastic Reconfiguration. Phys. Rev. Lett. 80 (1998) 4558–4561. [CrossRef]
  16. D. Talay and L. Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations. Stochastic Anal. Appl. 8 (1990) 94–120.
  17. C.J. Umrigar, M.P. Nightingale and K.J. Runge, A Diffusion Monte Carlo algorithm with very small time-step errors. J. Chem. Phys. 99 (1993) 2865–2890. [CrossRef]

Recommended for you