Free access
Issue
ESAIM: M2AN
Volume 41, Number 2, March-April 2007
Special issue on Molecular Modelling
Page(s) 297 - 314
DOI http://dx.doi.org/10.1051/m2an:2007023
Published online 16 June 2007
  1. D.E. Adelman, N.E. Shafer, D.A.V. Kliner and R.N. Zare, Measurement of relative state-to-state rate constants for the reaction Formula . J. Chem. Phys. 97 (1992) 7323–7341. [CrossRef]
  2. M.V. Berry and R. Lim, The Born-Oppenheimer electric gauge force is repulsive near degeneracies. J. Phys. A 23 (1990) L655–L657. [CrossRef]
  3. A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu and J. Zwanziger, The geometric phase in quantum systems. Texts and Monographs in Physics, Springer, Heidelberg (2003).
  4. M. Born and R. Oppenheimer, Zur Quantentheorie der Molekeln. Ann. Phys. (Leipzig) 84 (1927) 457–484.
  5. R. Brummelhuis and J. Nourrigat, Scattering amplitude for Dirac operators. Comm. Partial Differential Equations 24 (1999) 377–394. [CrossRef] [MathSciNet]
  6. Y. Colin de Verdière, M. Lombardi and C. Pollet, The microlocal Landau-Zener formula. Ann. Inst. H. Poincaré Phys. Theor. 71 (1999) 95-127. [MathSciNet]
  7. J.-M. Combes, P. Duclos and R. Seiler, The Born-Oppenheimer approximation, in Rigorous Atomic and Molecular Physics, G. Velo, A. Wightman Eds., New York, Plenum (1981) 185–212.
  8. C. Emmerich and A. Weinstein, Geometry of the transport equation in multicomponent WKB approximations. Commun. Math. Phys. 176 (1996) 701–711. [CrossRef]
  9. C. Fermanian-Kammerer and P. Gérard, Mesures semi-classiques et croisement de modes. Bull. Soc. Math. France 130 (2002) 123–168. [MathSciNet]
  10. C. Fermanian-Kammerer and C. Lasser, Wigner measures and codimension 2 crossings. J. Math. Phys. 44 (2003) 507–527. [CrossRef] [MathSciNet]
  11. G.A. Hagedorn, A time dependent Born-Oppenheimer approximation. Commun. Math. Phys. 77 (1980) 1–19. [CrossRef]
  12. G.A. Hagedorn, High order corrections to the time-dependent Born-Oppenheimer approximation. I. Smooth potentials. Ann. Math. 124 (1986) 571–590. [CrossRef]
  13. G.A. Hagedorn, High order corrections to the time-independent Born-Oppenheimer approximation. I. Smooth potentials. Ann. Inst. H. Poincaré Sect. A 47 (1987) 1–19.
  14. G.A. Hagedorn, High order corrections to the time-dependent Born-Oppenheimer approximation. II. Coulomb systems. Comm. Math. Phys. 117 (1988) 387–403. [CrossRef] [MathSciNet]
  15. G.A. Hagedorn, Molecular propagation through electron energy level crossings, Memoirs of the American Mathematical Society 111 (1994).
  16. G.A. Hagedorn and A. Joye, A time-dependent Born-Oppenheimer approximation with exponentially small error estimates. Commun. Math. Phys. 223 (2001) 583–626. [CrossRef]
  17. T. Kato, On the adiabatic theorem of quantum mechanics. Phys. Soc. Jap. 5 (1950) 435–439. [CrossRef]
  18. M. Klein, A. Martinez, R. Seiler and X.P. Wang, On the Born-Oppenheimer expansion for polyatomic molecules. Commun. Math. Phys. 143 (1992) 607–639. [CrossRef]
  19. C. Lasser and S. Teufel, Propagation through conical crossings: an asymptotic transport equation and numerical experiments, Commun. Pure Appl. Math. 58 (2005) 1188–1230.
  20. R.G. Littlejohn and W.G. Flynn, Geometric phases in the asymptotic theory of coupled wave equations. Phys. Rev. A 44 (1991) 5239–5255. [CrossRef] [MathSciNet] [PubMed]
  21. A. Martinez and V. Sordoni, A general reduction scheme for the time-dependent Born-Oppenheimer approximation. C. R. Acad. Sci. Paris, Sér. I 334 (2002) 185–188.
  22. C.A. Mead and D.G. Truhlar, On the determination of Born-Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei. J. Chem. Phys. 70 (1979) 2284–2296. [CrossRef]
  23. G. Nenciu and V. Sordoni, Semiclassical limit for multistate Klein-Gordon systems: almost invariant subspaces and scattering theory. J. Math. Phys. 45 (2004) 3676–3696. [CrossRef] [MathSciNet]
  24. J. von Neumann and E.P. Wigner. Z. Phys. 30 (1929) 467.
  25. G. Panati, H. Spohn and S. Teufel, Space-adiabatic perturbation theory in quantum dynamics. Phys. Rev. Lett. 88 (2002) 250405. [CrossRef] [PubMed]
  26. G. Panati, H. Spohn and S. Teufel, Space-adiabatic perturbation theory. Adv. Theor. Math. Phys. 7 (2003) 145–204. [MathSciNet]
  27. J. Sjöstrand, Projecteurs adiabatiques du point de vue pseudodifferéntiel. C. R. Acad. Sci. Paris, Sér. I 317 (1993) 217–220.
  28. V. Sordoni, Reduction scheme for semiclassical operator-valued Schrödinger type equation and application to scattering. Comm. Partial Differential Equations 28 (2003) 1221–1236. [CrossRef] [MathSciNet]
  29. H. Spohn and S. Teufel, Adiabatic decoupling and time-dependent Born-Oppenheimer theory. Commun. Math. Phys. 224 (2001) 113–132. [CrossRef]
  30. S. Teufel, Adiabatic perturbation theory in quantum dynamics, Lecture Notes in Mathematics 1821. Springer (2003).
  31. S. Weigert and R.G. Littlejohn, Diagonalization of multicomponent wave equations with a Born-Oppenheimer example. Phys. Rev. A 47 (1993) 3506–3512. [CrossRef] [PubMed]
  32. Y.-S.M. Wu and A. Kupperman, Prediction of the effect of the geometric phase on product rotational state distributions and integral cross sections. Chem. Phys. Lett. 201 (1993) 178–186. [CrossRef]
  33. L. Yin and C.A. Mead, Magnetic screening of nuclei by electrons as an effect of geometric vector potential. J. Chem. Phys. 100 (1994) 8125–8131. [CrossRef]

Recommended for you