Free access
Issue
ESAIM: M2AN
Volume 41, Number 3, May-June 2007
Page(s) 543 - 574
DOI http://dx.doi.org/10.1051/m2an:2007026
Published online 02 August 2007
  1. G. Allaire, Shape Optimization by the Homogenization Method. Springer-Verlag (2002).
  2. G. Allaire and S. Gutiérrez, Optimal design in small amplitude homogenization (extended version). Preprint available at http://www.cmap.polytechnique.fr/preprint/repository/576.pdf (2005).
  3. G. Allaire and F. Jouve, Optimal design of micro-mechanisms by the homogenization method. Eur. J. Finite Elements 11 (2002) 405–416.
  4. G. Allaire, F. Jouve and H. Maillot, Topology optimization for minimum stress design with the homogenization method. Struct. Multidiscip. Optim. 28 (2004) 87–98. [MathSciNet]
  5. J.C. Bellido and P. Pedregal, Explicit quasiconvexification for some cost functionals depending on derivatives of the state in optimal designing. Discr. Contin. Dyn. Syst. 8 (2002) 967–982. [CrossRef]
  6. M.P. Bendsøe and O. Sigmund, Topology Optimization. Theory, Methods, and Applications. Springer-Verlag, New York (2003).
  7. A. Cherkaev, Variational Methods for Structural Optimization. Springer Verlag, New York (2000).
  8. A. Donoso and P. Pedregal, Optimal design of 2D conducting graded materials by minimizing quadratic functionals in the field. Struct. Multidiscip. Optim. 30 (2005) 360–367. [CrossRef] [MathSciNet]
  9. P. Duysinx and M.P. Bendsøe, Topology optimization of continuum structures with local stress constraints. Int. J. Num. Meth. Engng. 43 (1998) 1453–1478. [CrossRef] [MathSciNet]
  10. P. Gérard, Microlocal defect measures. Comm. Partial Diff. Equations 16 (1991) 1761–1794. [CrossRef]
  11. Y. Grabovsky, Optimal design problems for two-phase conducting composites with weakly discontinuous objective functionals. Adv. Appl. Math. 27 (2001) 683–704. [CrossRef]
  12. F. Hecht, O. Pironneau and K. Ohtsuka, FreeFem++ Manual. Downloadable at http://www.freefem.org
  13. L. Hörmander, The analysis of linear partial differential operators III. Springer, Berlin (1985).
  14. R.V. Kohn, Relaxation of a double-well energy. Cont. Mech. Thermodyn. 3 (1991) 193–236. [CrossRef] [MathSciNet]
  15. R. Lipton, Relaxation through homogenization for optimal design problems with gradient constraints. J. Optim. Theory Appl. 114 (2002) 27–53. [CrossRef] [MathSciNet]
  16. R. Lipton, Stress constrained G closure and relaxation of structural design problems. Quart. Appl. Math. 62 (2004) 295–321. [MathSciNet]
  17. R. Lipton and A. Velo, Optimal design of gradient fields with applications to electrostatics. Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XIV, Stud. Math. Appl. 31 (2002) 509–532.
  18. G. Milton, The theory of composites. Cambridge University Press (2001).
  19. F. Murat and L. Tartar, Calcul des Variations et Homogénéisation, Les Méthodes de l'Homogénéisation Théorie et Applications en Physique, Coll. Dir. Études et Recherches EDF, 57, Eyrolles, Paris (1985) 319–369. English translation in Topics in the mathematical modelling of composite materials, A. Cherkaev and R. Kohn Eds., Progress in Nonlinear Differential Equations and their Applications 31, Birkhäuser, Boston (1997).
  20. U. Raitums, The extension of extremal problems connected with a linear elliptic equation. Soviet Math. 19 (1978) 1342–1345.
  21. L. Tartar, H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations. Proc. Royal Soc. Edinburgh 115A (1990) 93–230.
  22. L. Tartar, Remarks on optimal design problems. Calculus of variations, homogenization and continuum mechanics (Marseille, 1993), World Sci. Publishing, River Edge, NJ, Ser. Adv. Math. Appl. Sci. 18 (1994) 279–296.
  23. L. Tartar, An introduction to the homogenization method in optimal design, in Optimal shape design (Tróia, 1998), A. Cellina and A. Ornelas Eds., Springer, Berlin, Lect. Notes Math. 1740 (2000) 47–156.

Recommended for you