Free access
Issue
ESAIM: M2AN
Volume 41, Number 3, May-June 2007
Page(s) 607 - 625
DOI http://dx.doi.org/10.1051/m2an:2007027
Published online 02 August 2007
  1. G. Allaire, Shape optimization by the homogenization method. Applied Mathematical Sciences 146, Springer (2002).
  2. G. Allaire and R. Kohn, Optimal design for minimum weight and compliance in plane stress using extremal microstructures. Eur. J. Mech. A Solids 12 (1993) 839–878.
  3. G. Allaire, F. Jouve and A.-M. Toader, A level-set method for shape optimization. C. R. Acad. Sci. Sér. I 334 (2002) 1125–1130.
  4. G. Allaire, F. de Gournay, F. Jouve and A.-M. Toader, Structural optimization using topological and shape sensitivity via a level set method, Internal report, n° 555, CMAP, École polytechnique. Control Cybern. 34 (2005) 59-80.
  5. H. Ammari, M.S. Vogelius and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II - The full Maxwell equations. J. Math. Pures Appl. 80 (2001) 769–814. [CrossRef] [MathSciNet]
  6. S. Amstutz, I. Horchani and M. Masmoudi, Crack detection by the topological gradient method. Control Cybern. 34 (2005) 119-138.
  7. G. Aubert and J.-F. Aujol, Optimal partitions, regularized solutions, and application to image classification. Appl. Anal. 84 (2005) 15–35. [CrossRef] [MathSciNet]
  8. G. Aubert and P. Kornprobst, Mathematical problems in image processing. Applied Mathematical Sciences 147, Springer-Verlag, New York (2002).
  9. J.-F. Aujol, G. Aubert and L. Blanc-Féraud, Wavelet-based level set evolution for classification of textured images. IEEE Trans. Image Process. 12 (2003) 1634–1641. [CrossRef] [MathSciNet] [PubMed]
  10. M. Bendsoe, Optimal topology design of continuum structure: an introduction. Technical report, Department of Mathematics, Technical University of Denmark, Lyngby, Denmark (1996).
  11. M. Berthod, Z. Kato, S. Yu and J. Zerubia, Bayesian image classification using Markov random fields. Image Vision Comput. 14 (1996) 285–293. [CrossRef]
  12. C.A. Bouman and M. Shapiro, A multiscale random field model for Bayesian image segmentation. IEEE Trans. Image Process. 3 (1994) 162–177. [CrossRef] [PubMed]
  13. P.G. Ciarlet, Finite Element Method for Elliptic Problems. North Holland (2002).
  14. L. Cohen, E. Bardinet and N. Ayache, Surface reconstruction using active contour models. SPIE Int. Symp. Optics, Imaging and Instrumentation, San Diego California USA (July 1993).
  15. R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Collection CEA, Masson, Paris (1987).
  16. X. Descombes, R. Morris and J. Zerubia, Some improvements to Bayesian image segmentation – Part one: modelling. Traitement du signal 14 (1997) 373–382.
  17. X. Descombes, R. Morris and J. Zerubia, Some improvements to Bayesian image segmentation – Part two: classification. Traitement du signal 14 (1997) 383–395.
  18. A. Friedman and M.S. Vogelius, Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem of continuous dependance. Arch. Rational Mech. Anal. 105 (1989) 299–326. [CrossRef] [MathSciNet]
  19. S. Garreau, P. Guillaume and M. Masmoudi, The topological asymptotic for PDE systems: The elasticity case. SIAM J. Control Optim. 39 (1991) 17–49.
  20. L. Jaafar Belaid, M. Jaoua, M. Masmoudi and L. Siala, Image restoration and edge detection by topological asymptotic expansion. C. R. Acad. Sci. Paris. Ser. I Math. 342 (2006) 313–318.
  21. Z. Kato, Modélisations markoviennes multirésolutions en vision par ordinateur - Application à la segmentation d'images SPOT. Ph.D. thesis, INRIA, Sophia Antipolis, France (1994).
  22. M. Masmoudi, The topological asymptotic, in Computational Methods for Control Applications, R. Glowinski, H. Karawada and J. Periaux Eds., GAKUTO Internat. Ser. Math. Sci. Appl. 16, Tokyo, Japan (2001) 53–72.
  23. D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42 (1989) 577–685. [CrossRef] [MathSciNet]
  24. N. Paragios and R. Deriche, Geodesic active regions and level set methods for supervised texture segmentation. Int. Jour. Computer Vision 46 (2002) 223–247. [CrossRef]
  25. T. Pavlidis and Y.-T. Liow, Integrating region growing and edge detection. IEEE Trans. Pattern Anal. Machine Intelligence 12 (1990) 225–233. [CrossRef]
  26. P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Machine Intelligence 12 (1990) 629–638. [CrossRef]
  27. B. Samet, S. Amstutz and M. Masmoudi, The topological asymptotic for the Helmholtz equation. SIAM J. Control Optim. 42 (2003) 1523–1544. [CrossRef] [MathSciNet]
  28. C. Samson, L. Blanc-Féraud, G. Aubert and J. Zerubia, A level set method for image classification. Int. J. Comput. Vision 40 (2000) 187–197. [CrossRef]
  29. C. Samson, L. Blanc-Féraud, G. Aubert and J. Zerubia, A variational model for image classification and restauration. IEEE Trans. Pattern Anal. Machine Intelligence 22 (2000) 460–472. [CrossRef]
  30. J.A. Sethian, Level set methods evolving interfaces in geometry, fluid mechanics, computer vision, and materials science. Cambride University Press (1996).
  31. J. Sokolowski and A. Zochowski, Topological derivatives of shape functionals for elasticity systems. Int. Ser. Numer. Math. 139 (2002) 231–244.
  32. S. Solimini and J.M. Morel, Variational methods in image segmentation. Birkhauser (1995).
  33. L. Vese and T. Chan, Reduced Non-Convex Functional Approximations for Image Restoration and Segmentation. UCLA CAM Report 97–56 (1997).
  34. M.Y. Wang, D. Wang and A. Guo, A level set method for structural topology optimization. Comput. Methods Appl. Mech. Engrg. 192 (2003) 227–246. [CrossRef] [MathSciNet]
  35. J. Weickert, Efficient image segmentation using partial differential equations and morphology. Pattern Recogn. 34 (2001) 1813–1824. [CrossRef]

Recommended for you