Free access
Issue
ESAIM: M2AN
Volume 41, Number 3, May-June 2007
Page(s) 461 - 484
DOI http://dx.doi.org/10.1051/m2an:2007028
Published online 02 August 2007
  1. G. Barles and P.E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Anal. 4 (1991) 271–283. [MathSciNet]
  2. M.J. Brooks and K.P. Horn, Shape from shading. MIT Press, Cambridge, MA (1989).
  3. F. Camilli and L. Grüne, Numerical approximation of the maximal solutions for a class of degenerate Hamilton-Jacobi equations. SIAM J. Num. Anal. 38 (2000) 1540–1560. [CrossRef]
  4. F. Camilli and A. Siconolfi, Maximal subsolutions for a class of degenerate Hamilton-Jacobi problems. Indiana Univ. Math. J. 48 (1999) 271–283.
  5. E. Cristiani and M. Falcone, Fast semi-Lagrangian schemes for the eikonal equation and applications. http://cpde.iac.rm.cnr.it/file_ uploaded/EFX30053.pdf.
  6. S.C. Di Marco and R.L.V. González, Minimax optimal control problems. Numerical analysis of the finite horizon case. ESAIM: M2AN 33 (1999) 23–54. [CrossRef] [EDP Sciences]
  7. S.C. Di Marco and R.L.V. González, Numerical approximation of a singular optimal control problem. Anales de Simposio Argentino en Investigación Operativa, 32° Jornadas Argentinas de Informática e Investigación Operativa, Sociedad Argentina de Informática e Investigación Operativa (2003).
  8. S.C. Di Marco and R.L.V. González, Penalization methods in the numerical solution of the eikonal equation. Mecánica Computacional, Vol XXII, ISSN 1666–6070 (2003).
  9. H. Ishii and M. Ramaswamy, Uniqueness results for a class of Hamilton-Jacobi equations with singular coefficients. Comm. Partial Diff. Eq. 20 (1995) 2187–2213. [CrossRef]
  10. P.-L. Lions, E. Rouy and A. Tourin, Shape from shading, viscosity solutions and edges. Numer. Math. 64 (1993) 323–353. [CrossRef] [MathSciNet]
  11. J. Sethian, Fast marching methods. SIAM Rev. 41 (1999) 199–235. [CrossRef] [MathSciNet]
  12. H. Whitney, A function not constant on a connected set of critical points. Duke Math. J. 1 (1935) 514–517. [CrossRef] [MathSciNet]

Recommended for you